THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Mining Software Modeling Practices In
Open Source Software Projects

TRUONG HO-QUANG

Division of Software Engineering
Department of Computer Science & Engineering
Chalmers University of Technology and Goteborg University
Goteborg, Sweden, 2017

Mining Software Modeling Practices In Open Source Software Projects

TrUONG HO-QUANG

Copyright (©)2017 Truong Ho-Quang
except where otherwise stated.
All rights reserved.

Technical Report No 163L

ISSN 1652-876X

Department of Computer Science & Engineering

Division of Software Engineering

Chalmers University of Technology and Goteborg University
Goteborg, Sweden

This thesis has been prepared using ETEX.
Printed by Chalmers Reproservice,
Goteborg, Sweden 2017.

ii

“Extraordinary claims require extraordinary evidence.”
- Carl Sagan

iv

Abstract

Context: In modern software development, software modeling is considered
as an essential part of the software architecture and design activity. The Unified
Modeling Language (UML) has become the de facto standard for software
modeling in industry. Surprisingly, there are few empirical evidences on the use
of UML and a lack of evidence-based guidelines for applying UML in software
development.

Objective: As a first step toward synthesizing practical guidelines for the
use of UML, this thesis focuses on collecting a large set of OSS projects that
use UML. Subsequently this thesis offers observations on the use and impacts
of using UML in OSS projects.

Method: We combine techniques from repository mining and image classifi-
cation in order to successfully identify more than 24 000 open source projects
on GitHub that together contain more than 93 000 UML models. A quantita-
tive analysis and a large-scale survey have been carried out across this set of
projects.

Result: The results show that UML is used in OSS projects and in those
projects that use UML, UML helps new contributors and is generally perceived
as supportive. The most important motivation for using UML seems to be to
facilitate collaboration, as teams use UML during communication and planning
of joint implementation efforts. We hope researchers in the field will find data
and findings from this thesis a valuable source for their empirical studies.

Keywords: Software Engineering, Software Modeling, UML, FOSS, Empiri-
cal Study, Data Mining, Mining Repository, GitHub

Acknowledgment

To accomplish this Licentiate thesis, I have received lots of encouragement from
colleagues, friends and my family. I would take this opportunity to thank:

My main supervisor Prof. Michel R.V. Chaudron, for the continuous support
of my Ph.D study, for your patience, motivation, and immense knowledge.

Prof. Jordi Cabot (Open University of Catalonia - UOC), for being discus-
sant to this Licentiate thesis.

My co-supervisor Regina Hebig, for voluntarily supporting me and providing
me with tips and comments whenever needed.

My former co-supervisor Patrizio Pelliccione, for offering interesting discus-
sions and constructive comments in the first two years of my PhD.

My examiner Prof. Ivica Crnkovic, for your insightful comments and
encouragement, for hard questions which incent me to widen my research from
various perspectives.

Gregorio Robles and Miguel Angel Fernandez for being part of the best
team that I've ever had.

To all of my colleagues at the Software Engineering Division, including of
course administrative staff: Thank you all for creating such a friendly and
productive work environment. I particularly thank Rodi Jolak for sharing
the office with me, for interesting discussions and pingpong sessions. Hugo,
Federico, Grischa, Salome: for welcoming all of my questions when Google
cannot help out.

To Dave, Hafeez and Bilal: T am thankful to be part of our team. Thanks
to your help, I came to the PhD life less nervous.

To industrial partners Henrik Harmsen and Jesper Derehag, for bringing
industrial perspectives to part of my research.

And to the most important people in my life: My lovely wife and the
kid to-be-born - thank you for stepping into my life and making it full of
joy and happiness everyday. I also owe much of my success to my parents,
who supported me spiritually throughout writing this thesis and my life in
general. Last but not least, thank to my brothers and their families for the
great suggestions and motivation.

vii

List of Publications

Included publications

This thesis is based on the following publications:

[A] T. Ho-Quang, M.R.V. Chaudron, I. Samelsson, J. Hjaltason, B. Karasneh,
H. Osman “Automatic Classification of UML Class Diagrams from
Images”
21st Asia-Pacific Software Engineering Conference (APSEC 2014), Jeju,
Korea, December 1 - December 4, 2014.

[B] R. Hebig, T. Ho-Quang, M.R.V. Chaudron, G. Robles, F. Miguel Angel
“The Quest for Open Source Projects that Use UML: Mining GitHub”
ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2016), Saint-Malo, France, October 2
- October 7, 2016.

[C] T. Ho-Quang, R. Hebig, G. Robles, M.R.V. Chaudron, F. Miguel Angel
“Practices and Perceptions of UML Use in Open Source Projects”
Accepted at 39th International Conference on Software Engineering -
Software Engineering in Practice Track (ICSE SEIP 2017), Buenos Aires,
Argentina, May 20 - May 28, 2017.

ix

Other publications

The following publications were published during my PhD studies, or are
currently in submission. However, they are not appended to this thesis, due to
contents overlapping that of appended publications or contents not related to
the thesis.

[a]

H. Osman, M.R.V. Chaudron, P. van der Putten, T. Ho-Quang “Con-
densing Reverse Engineered Class Diagrams Through Class Name Based
Abstraction”

4th World Congress on Information and Communication Technologies
(WICT’14), Malacca, Malaysia, December 8 - December 10, 2014.

D.R. Stikkolorum, T. Ho-Quang, M.R.V. Chaudron “Revealing Students’
UML Class Diagram Modelling Strategies with WebUML and LogViz”
41st Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA), Funchal, Madeira, Protugal, August 26 - August 28,
2015.

D.R. Stikkolorum, T. Ho-Quang, B. Karasneh, M.R.V. Chaudron “Un-
covering Students’ Common Difficulties and Strategies During a Class
Diagram Design Process: an Online Experiment”

Educators Symposium at ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (EduSymp@MoDELS
2015), Ottawa, Canada, September 29, 2015.

R. Hebig, T. Ho-Quang, M.R.V. Chaudron, G. Robles, F. Miguel Angel
“The Quest for UML in Open Source Projects Initial findings from GitHub”
in Proceedings of the Doctoral Consortium at the 12th International
Conference on Open Source Systems (0SS 2016), Géteborg, Sweden, May
30, 2016

L. Sion, R.Scandariato, K.Yskout, T. Ho-Quang, W. Joosen “Where is my
security code? A comparison of four program comprehension techniques”
In submission to 25th IEEFE International Conference on Program Com-
prehension (ICPC 2017)

R. Jolak, E. Umuhoza, T. Ho-Quang, M.R.V. Chaudron, M.Brambilla
“One Marshmallow Now And Two Later: Short- And Long-Term Benefits
of UML Modeling”

In submission to the 21st conference on Fvaluation and Assessment in
Software Engineering Conference (EASE17)

G. Robles, T. Ho-Quang, R. Hebig, M.R.V. Chaudron, F. Miguel Angel
“An extensive collection of UML files in GitHub”

In submission to the Data Showcase of the 14th International Conference
on Mining Software Repositories (MSR 2017).

Research Contribution

My contributions to Paper A are study design, data analysis and the majority
of paper writing. The tool that was used for extracting image-processing
features in the paper was implemented by I. Samelsson and J. Hjaltason. The
remaining authors contributed with reviews and improvement suggestions.

Studies reported in Paper B and C were conducted in collaboration with
the Grupo de Sistemas y Comunicaciones (GSyC) ! at the Universidad Rey
Juan Carlos (URJC)2. In the two papers, the major effort in classifying UML
images and validating the classification results was made by me.

In Paper B, I participated and contributed in designing the study, formu-
lating research questions, analyzing data and discussing results. I wrote a
majority of the publication regarding Introduction, Methodology and Threats
to validity.

In Paper C, I took the leading role in study design, data collection and data
analysis. My major effort in this work consisted of identifying UML images,
executing the survey and analyzing the data. In term of paper writing, I wrote
the majority of the sections Research Questions, Methodology, Results/Findings
and Conclusion.

!Home page of GSyC - https://gsyc.urjc.es/
2Home page of the Universidad Rey Juan Carlos (Madrid, Spain) - http://www.urjc.es/

xii

Contents

Abstract

Acknowledgment

List of Publications

Personal Contribution

1 Introduction
Research Focus

1.1

1.2

1.3

14

1.5
1.6

1.1.1
1.1.2

Goals of the PhD study
Goals and Outcomes of the Licentiate thesis

1.1.3 Research questions of the Licentiate thesis
Background
1.2.1 The Unified Modeling Language (UML): a short overview

1.2.2
1.2.3

Effort of collecting UML for empirical research
UML use and impacts of using UML in software engi-
neering projects Lo
1.2.3.1 UML use in industry
1.2.3.2 UML in OSS projects

Methodology

1.3.1

Constructive research method

1.3.2 Empirical methods
Contributions
1.4.1 Paper A: Automatic classification of UML class diagrams

1.4.2

1.4.3

1.4.4

fromimages Lo
Paper B: The quest for open source projects that use
UML: mining GitHub
Paper C: Practices and perceptions of UML use in open
source projects
Answers to research questions

Threats to validity L o oL
Future Worko

1.6.1
1.6.2

1.6.3
1.6.4

Curating the dataset
Extending understanding about UML use: success and
failure factors oL
Building guidelines for UML use
Other directions

vii

ix

B,

O Oy U UL W W =

xiv CONTENTS

2 Paper A 25

2.1 Imtroduction. L 26

2.2 Related Work o 27

2.2.1 Image classification oL 27

2.2.2 Diagram feature extraction 28

2.3 Research Questions 28

24 Approach 28

2.4.1 Overall framework 28

2.4.2 Image processing 29

2.4.3 Feature extraction 30
2.4.3.1 Which features set UML CD apart from other

diagrams? 31

2.4.3.2 Extraction features in details 31

2.4.4 UML CD classification 33
2.4.4.1 Choosing the most suitable classification algo-

rithm oo 33

2.4.4.2 Training classifier 33

2.4.5 Analyse Result, 34

2.5 Experiment Description 34

2.5.1 Dataset 34

2.5.2 Evaluation measures 34

2.5.2.1 Features Predictive Performance 34

2.5.2.2 Classification Algorithm Performance 34

2.5.3 Experiment settings 000 35

2.6 Analysis Of Results. 35

2.6.1 RQ1: Influence of features 35

2.6.2 RQ2: Classification algorithms performance 36

2.6.3 RQ3: Set of features Performance 37

2.7 Discussion Lo 38

2.7.1 Image Processing Time 38

2.7.2 Image Processing Features Performance 39

2.7.3 Classification Algorithms 40

2.7.4 Threats to validity 40

2.7.4.1 Threats to Internal Validity 40

2.7.4.2 Threats to External Validity 40

2.7.4.3 Threats to Construct Validity 40

2.8 Conclusions and Future Work, 40

3 Paper B 43

3.1 Imtroduction 44

3.2 Research questions 45

3.3 Related research L L. 46

3.3.1 Useof UMLin FOSS 46

332 Mining. L 47

3.4 Methodology 47

3.4.1 Occurrence of UML 48

3.4.2 DataCollection, 49

343 UMLffilters 50

3.4.3.1 Identify UML images 50

CONTENTS XV

3.4.3.2 Identify UML files among .xmi and .uml files . 51

3.4.4 Metadata Extraction and Querying 52
3.5 Results.o 52
3.5.1 RQI1: UML in GitHub projects 53
3.5.2 RQ2: Versions of UML models 53
3.5.3 RQ3: Time of UML model introduction 54
3.5.4 RQ4: Time span of active UML 56
3.5.5 RQb5: Duplicates 58
3.6 Discussion Lo 59
3.7 Threats to validity 62
3.7.1 Threats to construct validity 63
3.7.2 Threats to external validity 63
3.7.3 Threats to conclusion validity 64
3.8 Conclusions 64
4 Paper C 67
4.1 Imtroduction 68
4.2 Research Question 69
4.3 Related worko 70
4.3.1 Modeling in Industry L. 70
4.3.2 Modeling in Open Source Software 70
4.4 Research Methodology 71
4.4.1 Data Collection 71
4.4.1.1 Obtaining the full list of GitHub projects . . . 71
4.4.1.2 Identifying UML files 71
4.4.1.3 Extracting meta-data 71
4.4.2 Filtering the obtained projects and contributors 72
4.4.2.1 Filtering short-time projects 72
4.4.2.2 Merging duplicate contributors 72
4.4.3 Conducting thesurvey, 72
4.4.3.1 Participanto 72
4.4.3.2 Questionnaire 73
4.4.3.3 Sending out the survey 74
4.4.4 Data Analysis. 74
4.5 Results/Findings L L. 75
4.5.1 Respondent Demographics. 75
452 Whyis UMLused? 76
4.5.2.1 What are the motivations to use UML modeling? 76
4.5.2.2 What are the reasons not to use UML in projects? 77
4.5.3 Is UML part of the interaction of contributors? 7
4.5.3.1 Developer’s awareness about the existence of
UML in their projects 7
4.5.3.2 Are UML models used during communication
and team decision making? 78
4.5.3.3 Are modeled designs adopted afterwards, dur-
ing the implementation phase by teams of OSS
contributors? L 79
4.5.4 What is the impact/benefit of UML? 80

4.5.4.1 Can UML models support new contributors? . 80

xvi CONTENTS
4.5.4.2 What are the impacts of using UML in OSS
projects? L. 81
4.5.4.3 Can UML models help to attract new contribu-
tors? ..o 82
4.6 Discussions s 83
4.6.1 Comparison to Insights to Related Works 83
4.6.2 Implications L 84
4.6.2.1 OSS practitioners 84
4.6.2.2 OSSseniors. 84
4.6.2.3 Industrial companies. 84
4.6.2.4 University teachers 84
4.6.3 Threats to Validity 84
4.7 Conclusion and Future work o0 85
4.8 Appendix 1. Distribution of survey respondents by countries . 87
4.9 Appendix 2. Distribution of survey respondents by continents . 87

Bibliography 89

Chapter 1

Introduction

In modern software development, software modeling is considered as an essential
part of the software architecture and design activity. The Unified Modeling
Language (UML) is a graphical language for modeling software systems. The
UML was first introduced in 1997 [1]. Since then, it has become the de facto
standard for software modeling in industry. The UML is a language but not a
method. Its use and impact are different across companies and software systems.
To shed some light on the practical use and impacts of using UML, a number
of research studies have been conducted such as [2-11]. However, conclusions
are diverse and partially contradictory. For example, in a large-scale interview,
Petre [11] found that the majority of the interviewees refused to use the UML
because of its complexity, lack of formal semantics, inconsistency, and issues of
synchronization between different diagrams. However, there are case-studies
where UML is actively used and positively impact software system. In a case
study at ABB, Anda et al. [2] found out that UML is actively adopted and
the UML adoption constitutes in the improvement of softwares traceability,
communication within development teams, code-design.

Looking at these results, we are triggered by the questions: Why UML
is successfully adopted in some cases but not on the others?, Are there any
common success formula for UML adoption?, Are there any guidelines for
applying UML in practice? We find out that it is difficult to properly answer
the questions because: i) there is a surprising lack of empirical evidence on the
use and impacts of using UML [8,10] and ii) empirical research in the field
is generally lacking of replication [12]. As a consequence, existing results are
often not generalizable or comparable.

Yet, practical guidelines and underlying success/failure factors of UML use
remain invisible. This could lead to the application of UML that does not lead
to expected improvement in software quality or in communication between
development teams. This, eventually, results in a waste of organization’s effort
and money for UML adoption.

This Licentiate thesis is a first step toward a PhD thesis that aims at synthe-
sizing practical guidelines for UML use by systematically collecting
and studying UML practices in real-life software systems.

We are inspired by the concept of business intelligence (BI) [13] to approach
this problem. In particular, BI defines 5 stages to gain applicable knowledge

2 CHAPTER 1. INTRODUCTION

from raw data. They are raw-data, information, knowledge, expertise and
ultimately, wisdom. Similarly, actionable guidelines of UML use can be built on
top of empirical data of UML use, through a “mining” process. In the context
of this PhD study, “mining software modeling practices” refers to the process
of building actionable guidelines for UML use on top of a rich empirical dataset
of UML design and its use.

The mining process comprises of three stages on which specific goals of
the PhD thesis and Licentiate thesis build: i) Collecting empirical data, ii)
Understanding factors that affect to UML use and iii) Building practical
guidelines for UML use.

Collecting empirical data. First, evidence-based knowledge is built on top
of empirical dataset/corpus. As a prerequisite to build up practical guidelines
for UML use, a rich empirical data of UML use needs to be collected. When it
comes to data collection, an obvious question is where to collect the data from.
One option is to collect UML practices from industrial companies. This has pros
and cons. The main advantage of industrial UML practices is industry-relevant
contexts (including rationale, business decisions) behind UML use. The main
drawback lays in data availability. Particularly, it is generally difficult to collect
industrial cases where UML is used, because companies consider their design as
commercially sensitive information or as a reflection of their state of IT-affairs.
This could further limit the study’s replication. An alternative option is to
collect UML practices from OSS projects. Data availability and transparency
are clearly the main advantage of OSS projects compared with industrial cases.
Public access to not only UML file but also other resources such as source
code, documentation, issues, commit message, etc. would allow researchers to
put the UML file in its usage context. The main challenge is to identify OSS
projects that use UML. This is due to the large variety of UML file formats
and the lack of support from most open source platforms, such as GitHub,
for model versioning. This Licentiate thesis focuses on finding UML practices
in OSS projects and takes the challenge of identifying OSS projects that use
UML.

Understanding factors that affect UML use. In order to reach the final
goal of the PhD thesis, we see the need of building sufficient understanding
about UML and its use in software development projects as the intermediate
step. Examples of “sufficient understanding” are circumstances where UML is
used, aspects that affect the way UML is used and further, factors that make
UML use successful or unsuccessful within software projects. To gain such
the understanding, UML design should not just be considered as a standalone
documentation but rather in its relation with other software resources such as
source code, requirements, etc. This is a precondition to study impacts of use
of UML on other software elements (e.g. UML models might have impact on
source code modularity [8]), and vice versa (e.g. communication habits within
teams might affect the way developers construct and use UML). In order to
gain such understanding, in-depth analysis needs to be carried out on top of a
rich and evidence-based data. Accordingly, having a well-structured data could
result in better understanding. Likewise, understanding about UML and how
it is used in different projects would allow us to better organize and classify

1.1. RESEARCH FOCUS 3

projects (e.g. by projects domain, habits of using UML, etc.). In this Licentiate
thesis, we collect a large set of OSS projects that use UML, then build first
observations on the use and impacts of using UML in OSS projects. Questions
regarding success or failure of UML use require a certain level of maturity of
the data, e.g. UML models are classified by their quality. Therefore, these
questions are left for later part of the PhD study.

Building practical guidelines for UML use. Understanding the use and
impacts of using UML does not necessarily mean knowing “how to efficiently
apply” or “how to efficiently use” UML in real-life situations. A large scale
survey by Dobing et al. [3] suggests that the lack of usage guidelines is one of the
biggest concerns with UML. We aim to set the final goal of this PhD as building
practical and actionable guidelines for UML use, targeting organizations and
software practitioners. To this end, the guidelines needs to be built on top
of firm understanding about the use of UML, in a large number of real-life
software projects. This Licentiate thesis, as a first step toward building the
guidelines, aims at providing a number of implications for software engineering
practitioners, software development teams and teachers. The implications
should be drawn from first pieces of understanding on the use and the rationale
behind the use of UML in OSS projects. It is worth noting that learning from
OSS practices does not mean to ignore or overlook UML use in industrial
context. Given the ever-increasing penetration of OSS culture to industrial
companies, findings from this Licentiate thesis can be valuable and generalizable
to industrial context, as well.

The remainder of this chapter is constructed as follow. Section 1.1 presents
the research focus and research questions of the thesis. Section 1.2 provides
readers with background of the study. Section 1.3 discusses the methodology.
Section 1.4 presents a short summary of each papers and their contribution
to the goal of the thesis. Section 1.5 discusses the threats to validity and
section 1.6 wraps up this chapter with future works.

1.1 Research Focus

This section frames the research goals of the PhD study into a big picture, and
explains the focus of the thesis in this picture.

1.1.1 Goals of the PhD study

This PhD study aims at synthesizing practical guidelines for UML use by
systematically collecting and studying UML practices in real-life software
systems. The goals of this PhD study are:

e Goal G1. To collect and provide software practitioners with empirical
evidence of UML use in real software systems, and

e Goal G2. To understand success/failure factors of UML use in practice,
and

e Goal G3. To provide software practitioners and organizations with a
practical guideline of using UML.

4 CHAPTER 1. INTRODUCTION

Knowledge

Dataset

Figure 1.1: Pyramid of goals of the PhD Study

Figure 1.1 shows the relation of the three goals in the context of this PhD
study. Goal G1 aims at establishing empirical data of UML use in real software
projects. Goal G2 aims at gaining knowledge about UML use and factors that
affect the use by quantitatively and qualitatively questioning and analyzing
the built data (from G1). Goal G3, in its turn, aims at synthesizing knowledge
gained from G2 and G1 in an actionable and practical guideline of UML use,
targeting software practitioners and organizations.

The PhD study is designed in a replicable manner. Accordingly, data
obtained from G1 is open for public access. Methods are described step by
step, limitations and threats to validity are carefully discussed in the chapters.

The PhD study is designed and conducted incrementally. In particular, the

main goals are divided into sub goals/steps, based on the maturity of the study
(Figure 1.2).

LIC. Goals

Figure 1.2: Licentiate goals in the relation with of PhD goals

1.1. RESEARCH FOCUS 5

We split G1 into two sub goals:

e G1.1 (Data Collection) aims to systematically collect a large data set of
OSS projects that use UML.

e G1.2 (Data Curation) focuses on classifying and organizing the projects
in a systematic manner.

We split G2 into two sub goals:

e G2.1 (Exploratory understanding) aims at exploratory understanding of
the use and impact of using UML in the projects.

e G2.2 (Eliciting success/failure factors) makes a step further by eliciting
the success and failure factors of UML use, taking into account the
differences of the projects.

G3 is split into two subgoals:

e G3.1 (Implications) Providing implications on the use of UML based on
first pieces of understanding gained from G2.1.

e G3.2 (Guideline) provides complete guideline for UML use.

1.1.2 Goals and Outcomes of the Licentiate thesis

The main goals of this Licentiate thesis are G1.1, G2.1 and G3.1. Expected
outcomes of the Licentiate are as follow:

e Goal G1.1. Researchers in the area of modeling in software engineering
have performed some efforts to collect examples of models and of projects
that use modelling. However, the results are often limited [14] due to the
so far limited success in identifying open source projects with UML. G1.1
aims at combining various techniques to solve this issue. The outcome of
G1.1 is a list of OSS projects that use UML and a systematic process to
identify them.

e Goal G2.1. This goal aims at answering simple research questions
regarding UML use by using the list obtained from G1.1. The expected
outcome of G2.1 is quantitative and qualitative analyses of UML use
in OSS projects. Examples of such basic analyses are time period when
UML is introduced, whether UML is updated and rationale behind the
use of UML and impacts of using UML.

e Goal G3.1. The outcome of this should be a list of implications about
UML use, targeting software practitioners in OSS and might possibly in
industrial settings.

1.1.3 Research questions of the Licentiate thesis

To reach the goals of the Licentiate thesis, we formulate the following research
questions:

e RQ1. How can we identify UML models in OSS projects?

6 CHAPTER 1. INTRODUCTION

e RQ2. How is UML used in OSS projects?

e RQ3. Why is UML used in OSS projects? What are impacts of using
UML in OSS projects?

¢ RQ4. Can we draw implication for UML use?

Among the research questions, RQ1 aims for G1.1, RQ2 and RQ3 target
G2.1, and RQ4 captures G3.1.

1.2 Background

This thesis takes the UML as the main research subject. Section 1.2.1 provides
readers with a short overview about the emergence of the UML.

An important part of this Licentiate thesis is collecting empirical data of
UML and its use. Section 1.2.2 summarizes some efforts performed by other
researchers to collect UML for empirical research.

Section 1.2.3 aims at providing an overall picture of UML use in industry
and OSS by summarizing previous empirical studies in the field.

1.2.1 The Unified Modeling Language (UML): a short
overview

The evolution of UML is described in detail by Kobryn [15]. The UML
emerged from the competition in creating notations for object-oriented design
by Booch [16], Rumbaugh et al. [17], Jacobson et al. [18] and other researchers
in the early nineties of the 20th century. The UML was developed by Rational
Software in 1996. The 1.0 version was proposed in January 1997 and officially
adopted by the Object Management Group (OMG) later that year. Since then,
the UML has undergone many revisions, with UML 2.0 released in 2005 and
most recently UML 2.5 in June 2015.

Diagram

[1
Structure Behavior
Diagram Diagram
T T T [[1
’ Component Object Activity Use Case State Machine
Clnss Diagram Diagram Diagram Diagram Diagram Diagram
Composite)
oSt Deployment Package Interaction
- Diagram Diagram Diagram
Diagram 9
[+
[I
Profile Diagram Sequence intersation
Diagram verview
Diagram
Communication Timing
Diagram Diagram

Figure 1.3: Taxonomy of UML diagrams

1.2. BACKGROUND 7

UML 2.5 has 14 diagram types. They are divided into two categories,
namely structure- and behavior- diagrams. Structure diagrams show the static
structure of systems, while behavior diagrams show the dynamic behavior of
systems, including their methods, collaborations, activities, and state histories.
Figure 1.3 shows a taxonomy of UML diagrams.

In the OMG’s view, "modeling is the designing of software applications
before coding.” The OMG promotes model-driven architecture as the approach
in which UML models of the software architecture are developed prior to
implementation. However, as the UML is a language and not a method, there
are much more ways of using it, e.g. for reverse engineering, refactoring,
documenting an existing system, etc. In addition, the UML is a methodology-
independent language, one could use it in different software development
processes (e.g. when planning, analyzing requirements) and in different software
development methods (e.g. water fall or agile approach). In this thesis, the
UML is considered in all contexts where it is used, not limited to model-driven
per se. Figure 1.4 shows examples of three different types of UML diagrams.

1.2.2 Effort of collecting UML for empirical research

Researchers in the area of modeling in software engineering have performed some
efforts to collect examples of models and of projects that use modeling. However
the results are often limited [14]. For example, the Repository for Model
Driven Development (ReMoDD) [19] is an initiative driven by an international
consortium of leading researchers in the field of modeling. Nevertheless its
content is growing at a low rate: after 9 years (summer 2016) it contains around
81 models. Industrial projects are very reluctant to share models because they
believe these reflect key intellectual property and/or insight into their state of
IT-affairs.

Karasneh et al. [20] use a crawling approach to automatically collect and
fill an online repository with so far more than 700 model images. This work
focus on the models only and do not take their project context into account.
Further, Karasneh et al. do not distinguish between models that stem from
actual software development projects and models that are created for other
reasons, e.g. teaching. An index of existing model repositories can be found
online [14]. However, in addition to their small size, these repositories seldom
include other artifacts than the models, making it impossible to study the
models in the environment of actual projects.

Further, there are some works addressing small numbers of case studies of
modeling in open source projects. Yatani et al. [21] studied the models usage in
Ubuntu development by interviewing 9 developers. They found that models are
forward designs that are rarely updated. Osman et al. [22] investigated 10 case
studies of open source projects from Google-code and SourceForge that use
UML. They focused on the relation between classes in the diagrams compared
to classes in the code. They find only seldom cases where models are updated.

Finally, there are three works that actually approach a quantitative inves-
tigation of models in open source projects. Chung et al. [23] questioned 230
contributors from 40 open source projects for their use of sketches and found
that participants tend to not update these sketches. A study that focuses on
software architecture documentation in open source projects was performed

CHAPTER 1.

INTRODUCTION

interface

«interface»
android.view::SurfaceHolder

+ addCallback(callback: SurfaceHolder.Callback)
+romoveCalbok{calback: Sufacaodor Caback)
+ sefType(type: Integer)

S o)

+ getSurface(): Surfa

usage
dependency

«usen

—

«use»

«interfaces
android.view::SurfaceHolder.Callback

+ surfaceChanged (holder: SurfaceHolder,
format: Integer, width: Integer, height: megeq
+ surfaceCreated(holder: SurfaceHolder)

+ surfaceDestroyed (holder: Survwenmer)

‘android.view::SurfaceView

+ [draw(canvas: Canvas)
+ getHolder(): SurfaceHolder

interface

realization

5

android.app::Activity

»cncmmsma Bundie)
#onStart(

cnsmpo

#onDestroy()

+onCreateOptionsMenu(menu: Menu): Boolean
+onOptionsliemSelected|item: Menultem): Boolean

«use»

—— generalizat

tion

CameraDemo

- buttonClick: Button
~ shutterCallback ShutterCallback <
- rawCallback: PictureCallback
~ jpegCallback: PictureCallback

— class

atributes

~context
JonCreate(savedinstanceState: Bundle)
#lonStart()

#lonStop()

#/onDestroy()

+ lonCreateOptionsMenu(menu: Menu): Boolean

__—— aggregation

- camera
Proview android.hardware:
~ mHolder: SurfaceHolder [Zhreview | - :
””” + getParameters(): Parameters
- + «creater Preview(context: Context) + setParamoters(params: Parametors)
onsicir + IsurfaceChanged (holder: SurfaceHolder, format: + setProviewDisplay (hoider: Sracemioldor) {nal)
Integer, width: Integer, height: Integer) o——- + statPreview() {final}
+ IsurfaceCreated(holder: SurfaceHolder) + stopPreview) final)
+ IsurfaceDestroyed (hoider: SurfaceHolder) + camera | + reloase() {final}
+ IgetHolder(): SurfaceHolder & 3
+ Idraw(canvas: Canvas) postviow: PictureCallback, jpeg: PictureCallback) {final}
derived operations
(a) Class diagram
sd submit_comments
J lifeline «serviety
:DWRServlet
«javascript»
:windo
window :Comments
gate
. object creation
validate() | melssage |
synchronous —/ validate()
message
9 | :Cfa_‘e: «ajax» |
fi e i
specification specification «ajax» |
reuen ——1 || «ajax»
message
. asynchronous
/» | message
gate |
«callback» errors
L
duration I |
constraint L
destruction
/— Handle Errors occurrence
specification
interaction use
| uml-diagrams.org
I

(b) Sequence diagram

subject,
/ business boundary
«Business»
association Airport business use case
business actor
Group
Check-In,
include
Tour Guide) | relationship
generalization G «include» l-4-/
between actors !
Individual
Check-l
extend
\ relationship
1. N
«extend»
business actor 1.7 ::ggage
Passenger
multiplicity business use case
© uml-diagrams.org

(c) Use-Case diagram

Figure 1.4: Examples of UML diagram - Source: http://www.uml-diagrams.

org/

http://www.uml-diagrams.org/
http://www.uml-diagrams.org/

1.2. BACKGROUND 9

by Ding et al. [24]. They manually studied 2 000 projects from SourceForge,
Google code, GitHub, and Tigris. Amongst those projects that used such
documentations they identified 19 projects that actually use UML.

1.2.3 UML use and impacts of using UML in software
engineering projects

In this section, we provide readers with an overall picture of UML use in
industry and in OSS projects by summarizing related works.

1.2.3.1 UML use in industry

UML is widely studied in industry, however, there are real needs
for more experiments and case studies Budgen et al. [10], in their
systematic review, identified 49 empirical studies of UML published up to the
end of 2008. Among them, 12 papers were about UML metrics, 14.5 about
model comprehension, and 7.5 about model quality (half points indicate papers
with more than one focus). Only 2 papers addressed UML adoption, i.e. by
Anda et al. [2] and Grossman et al. [5]. These two studies identify a range of
benefits and drawbacks associated with the adoption of UML. They particularly
highlight the need for further research relating to the UML and its adoption as
well as the need for, and importance of, an adequate level of training.

Another systematic review conducted by Fernndez-Séez et al. [25] identified
38 papers (published up to the end of 2010) that report 63 empirical studies
of UML use in software maintenance processes. Only 3 of them are case-
studies. Most research (60 empirical studies) concerns the maintainability and
comprehensibility of the UML diagrams themselves. The authors conclude
that there is a need for more experiments and case studies to be performed in
industrial contexts.

Nugroho and Chaudron [8] also argue that Despite the fact that UML is
widely used in practice, little is known about how UML is actually used.

UML adoption and its impacts are still under discussion Modeling
has been widely studied in industry, in particular in several survey studies.
Torchiano et al. [26] found that models help to improve design and documenta-
tion. However, they also found that model usage is connected to extra effort,
especially due to a lack of supporting tooling. Forward et al. [27] found that
models are primarily used for design and documentation, while code generation
is rather seldom. Gorschek et al. [28] focused on a different population, which
are programmers, partially working in industry and open source. Within their
sample design models are not used very extensively. However, models and
UML are found to be used mainly for communication purposes. Further, they
report on a higher use of models for less experienced programmers.

Dobing and Parsons [3] report on a survey of 171 UML users (plus 11
who use UML components within another OO methodology). The authors
found that ”only class diagrams are being used regularly...”. The majority
of respondents found that all aspects of UML are useful for most projects.
The authors also suggest that complexity and lack of usage guidelines are the
biggest concerns with UML.

10 CHAPTER 1. INTRODUCTION

Lange et al. [6] conducted a web-based survey in 14 industrial companies.
On the basis of the responses, they identified four main classes of problems
encountered: scattered information (e.g., design choices dependencies); incom-
pleteness, disproportion (more detail for some parts than others), inconsistency.

Nugroho et al. [29] conducted a survey among 48 professional developers
(from 10 different countries) about their perception toward correspondence
between source code and design. Respondents identify incompleteness of the
UML design as the most prominent factor that often forces them to deviate
from a UML design.

Scanniello [9] conducted a survey at 22 companies regarding the use of UML
in software development and maintenance. Survey responses show that the
majority of the companies (20) use UML in the analysis and design phases.

Besides these big surveys, case studies were performed in order to investigate
the impact of the modeling/UML usage. For example, Baker et al. [4] found
an increase of productivity when using UML in Motorola. Also Nugroho et
al. [30] investigated an industrial case study and found that UML usage has
the potential to reduce the defect density and, thus, increase the quality of
software. Just as in the case described by Kuhn et al. [31], most of the case
studies draw a picture of model use, where models are actually artifacts that
are produced and consumed by different people. Anda et al. [2] reports a case
study in ABB. This paper found anecdotal advantages of modeling such as
improved traceability. This paper also pointed to potential trade-offs, such as
time spending to integrate legacy code with models and organizational changes
needed to accommodate modeling.

Petre et al. [11] reported a series of interviews conducted over 2 years with
more than 50 practicing professional software developers. The author found
out that the majority of interviewees do not use UML, and those who do use it
tend to do so selectively and often informally.

Last but not least, Dzidek et al. [7] performed a controlled experiment to
investigate the influences of the use of UML to maintenance task (20 professional
developers). The result of the experiment shows a positive influence of the
presence of UML for maintainers. UML also helps novice developers to produce
code of better quality.

1.2.3.2 UML in OSS projects

Much less study has been done on UML use in OSS. One reason for this is the
challenge to actually find cases that can be studied. For example, Badreddin et
al. studied 20 projects, without finding UML and concluded that it is barely
used in open source [32]. Similarly, Ding et al. [24] found only 19 projects with
UML when manually studying 2000 open source projects.

There are several investigations of single or very small numbers of cases of
open source projects that use UML, e.g. by Yatani et al. [21], who found that
models are used to describe system designs, but are rarely updated. Osman et
al. [22] studied to what extent classes in the diagrams are implemented in the
code. Finally, Kazman et al. [33] investigate the Hadoop Distributed File System
to learn how documentation impacts communication and commit behavior in
the open source system. There are some studies that approach model use in
open source with a quantitative perspective, studying large numbers of projects.

1.3. METHODOLOGY 11

For example, to study the use of sketches, Chung et al. [23] collected insights
from 230 persons contributing to 40 open source projects. Finally, Langer et
al. [34] studied the lifespan of 121 enterprise architect models in open source
projects.

1.3 Methodology

In this thesis, we employ constructive research and empirical research methods
to achieve the three goals G1.1, G2.1 and G3.1. Table 1.1 shows the presence
of the two methods in papers A, B and C. Sections 1.3.1 and 1.3.2 discuss
the use of the methods across the papers. A more-detailed discussion of the
research strategies is found in the included papers.

Table 1.1: Summary of research method used in papers A, B and C

Paper A | Paper B | PaperC

Constructive method X X
Empirical method

X X

Survey study

1.3.1 Constructive research method

According to Crnkovic [35], the constructive research method implies building
of an artifact that solves a domain specific problem in order to create knowledge
about how the problem can be solved (or understood, explained or modeled)
in principle. Artifacts such as models, diagrams, plans, organization charts,
system designs, algorithms and artificial languages and software development
methods are typical constructs used in constructive research.

In the context of the Licentiate thesis, we follow the constructive research
approach to construct a process to systematically identify UML files in OSS
projects, and further, to identify OSS projects that use UML. Outcome of the
research is a list of OSS projects that use UML and a systematic process for
identifying them.

The constructive method is applied in the two papers A and B. In par-
ticular, paper A propose an automated method for automatically identifying
UML class diagram images among ordinary images. Paper B combines the
method described in Paper A with other techniques (e.g. GHTorrent [36],
CVSAnalY [37]) in a complete process to identify UML diagram files in 10%
of GitHub non-forked repositories (about 1.2 million projects). Paper C ap-
plies the process described in paper B to obtain UML files from all GitHub
non-forked repositories (around 12 million projects).

1.3.2 Empirical methods

Empirical study aims at gaining knowledge by means of direct and indirect
observation or experience. We see the need for empirical studies in order to
increase our understanding of the use of UML and its impacts within OSS
projects.

12 CHAPTER 1. INTRODUCTION

Among common empirical methods are survey studies. These are used to
identify the characteristics of a broad population of individuals. They are used
to obtain a representative picture of a larger population [38]. This fits goals
G2.1 and G3.1 of the study, as we want to create a broad picture of the use
and impacts of using UML in OSS projects.

Survey research is most closely associated with the use of questionnaires
for data collection. However, survey research can also be conducted by using
structure interviews, or data logging techniques [39]. We use different data
collection methods for the survey studies presented in paper B and C.

In paper B, we attempt to address RQ2. In paper B, 3 295 OSS projects
that use UML were identified. Subsequently, meta-data of the projects was
collected. Quantitative analysis of the data allows us to understand the use of
UML in OSS projects at the descriptive level, e.g. whether UML models are
used/updated, and if so, active time of UML models, etc.

In paper C, qualitative and quantitative data was collected using a survey
questionnaire. While quantitative data gives us an overview of OSS developers
opinion regarding purposes and impacts of using UML, qualitative data provides
us with the rationale behind their choices. We combine quantitative and
qualitative analysis in this paper is necessary for us to draw implications
concerning UML use.

1.4 Contributions

In this section, we firstly summarize and state the main contributions of the
three papers on which this Licentiate thesis builds in sections 1.4.1, 1.4.2 and
1.4.3. Research questions are subsequently answered in section 1.4.4.

Figure 1.2 offers an overview of the contributions of the three papers to the
main goals and research questions of the Licentiate thesis.

Table 1.2: Contributions of papers to specific goals and research questions
Stage Data collection Understanding Guidelines
Lic. goal G1.1 G2.1 G3.1
RQ RQ1 RQ2 RQ3 RQ4
Data collection
Paper A method o o o
/ ?
Identified 3 205 | > UML used:
projects that updated?
Paper B | use UML UML introduction | -
time?
(from 10% C
. What is active
GitHub repo) o
time’
Identified
94 797 projects Purp.()beb/lmpactb
of using UML? .
Paper C | that use UML . Implications
o Is UML helpful?
(from 100% Why?
GitHub repo) v

1.4. CONTRIBUTIONS 13

1.4.1 Paper A: Automatic classification of UML class di-
agrams from images

The UML is a graphical modeling language. Therefore, it is common to store
UML models in graphical file formats such as .png, .jpg, etc. While there
is a need of collecting UML models for empirical research, current research
methods often lack the systematical identification of images that represent
UML diagrams.

Paper A presents an automated classification method for images that
represent UML class diagram (UML CD). Building the classification would
on one hand help improving the data collection process of the existing UML
repositories, such as the one by Bilal et al. [20]. On the other hand, and more
importantly, this could further open up the possibility to automate the UML
crawling process and to build a larger collection of UML class diagrams.

(am (5) Analyse result)

Image —
@ Processing 4> Classification

Contours & Shapes

Horiz. & Vert. lines UML CD features/metrics
Rectangles |

Joining lines > 3 Feature extraction

Figure 1.5: Overall processes of paper A

To build the classifier, we use a combination of image processing and
machine learning. Figure 1.5 shows the processes of the paper A (this is
cloned from Figure 2.1 in the Chapter 2). We first introduced 23 features that
capture statistical and geometric characteristics of UML class diagrams. A
tool that extracts these features from images was built accordingly. Finally
we employed 6 well-known classification algorithms, including Decision Table,
Random Forest, Support Vector Machine, Logistic Regression, REP-Tree and
J48 Decision Tree [40], to build the classifier. The classification performance of
the defined image processing features and algorithms was assessed in terms of
classifying accuracy and robustness via several metrics, i.e. information gain,
specificity and sensitivity. A dataset of 1 300 different images was collected
from the Internet through Google Image Search (750 UML CD images and 750
non-UML CD images) for training and testing the classifier 1. This dataset
was shared as a benchmark.

The main contributions of the paper are:

[a] A machine learning method to build an automated classifier of UML
CD images. We find out that our method could reach 95.9% and 91.4%

Tmage set - http://bitly.com/dtsUMLClassifier

14 CHAPTER 1. INTRODUCTION

(respectively) of correct classification of input images for UML CD and
non-UML CD.

[b] Evaluation of classification performance of six algorithms on different
feature-sets in terms of classifying accuracy and robustness.

[c] A dataset of 1 300 images was shared as a benchmark for other classifica-
tion methods.

Overall, paper A encourages us that it is possible to automate the process
of identifying images that contain UML notations with high accuracy. This is
a prerequisite to build up a process to identify UML models from OSS projects
(Goal 1.1). This work is extending in different ways: Using the same approach
to create classifiers for sequence diagram, use-case diagram images.; Involving
text-recognition to enhance classification performance.

1.4.2 Paper B: The quest for open source projects that
use UML: mining GitHub

Little is known about UML use in Free/Open Source Software (FOSS) projects.
This is due to the so far limited success in identifying open source projects that
use UML. The lack of available data is the reason why so far no answers could
be given to different basic questions on the amount of UML files in open source
projects, the time span during which models are created or updated during
the open source project, or the question which of the projects contributors do
create models.

— >
GHTorrent “

I@ Data collection I |‘ @ Analyse result ‘l
1 4
Potential UML file list
4
@ Filter UML files I@ Query database I
UML Image Textual t
Filter Filter UML CVSAnalY MySQL
- 1
i File list
(Validation] —'I (3) Extract Meta-data I

Figure 1.6: Overall processes of paper B

Paper B contributes to this body of knowledge by a five steps approach.
Figure 1.6 shows these steps in a sequential order (this is cloned from Figure 3.1
in the Chapter 3). First, we combined different technologies, including the
classifier in Paper A, to form a semi-automated process for collecting UML
models stored in images, .xmi, and .uml files from over 1.2 millions GitHub

1.4. CONTRIBUTIONS 15

projects (10% of the whole) (from Step 1 - 2). Secondly, from Step 3 - 5, we
collected meta-data of the projects that used UML and quantitatively analyzed
the data to address the following research questions:

e Are there GitHub projects that use UML? Which are these projects?

e Are there GitHub projects in which the UML models are also updated?

When in the project are new UML models introduced?

e What is the time span of active UML creation and modification?
e Are UML models copied across projects?

The main contributions of the paper are:

[a] A semi-automated process for collecting UML models stored in over 1.2
millions GitHub projects.

[b] A list of 21 316 UML diagrams from 3 295 GitHub projects and their
meta-data. This is the first time the modeling community can establish a
corpus comparable to collections already exist for source code only, such
as QualitasCorpus 2.

[c] Quantitatively answering a number of research questions regarding the
use of UML in OSS projects.

1.4.3 Paper C: Practices and perceptions of UML use in
open source projects
Paper B reveals some facts about the use of UML based on quantitative analysis

on meta-data of OSS projects. These facts trigger us to discover the rationales
behind the use of UML and impacts of using UML in OSS projects.

Sent | 20294 emails

GHTorrent ~12 millions projects Received | 1628 comp\ete. resp.
from 1559 projects
Inputto | 485 completeresp.
analyses | 485 respondents
458 projects
@ Data collection @ Filter data
umL Non-UML Merge Filter —'[@ Conduct Survey }—'l @ Analyse result
projects projects contributors projects
Define | 93 648 UML models Working | 4650 UML projects
in 24797 UML proj. set | 99319 contributors

Figure 1.7: Overall processes of paper C

Paper C represents our large-scale survey on software developers of GitHub
projects that use UML. The overall process is shown in Figure 1.7 this is cloned
from Figure 4.1 in Chapter 4). We first extended the data collection method
presented in paper B to 100% of all GitHub repositories (over 12.8 millions
repos). This resulted in a dataset of over 93 000 UML models from over 24 000
GitHub projects. A number of filters was then applied in order to filter out
those projects that were suspected to be “toy”, e.g. active less than 6 months.

2Qualitas Corpus home page - http://qualitascorpus.com/

16 CHAPTER 1. INTRODUCTION

For the survey, we collected up to three persons per project, targeting
persons who had introduced UML models (1UC), persons who had updated
UML models (UC) and persons who had not committed UML models (NUC),
to send our survey to. As a result, we received 485 survey responses from 458
GitHub projects. Analyzing the responses allows us to answer the following
main research questions:

e Why is UML used in OSS projects?
o Is UML part of the interaction of (a team of) contributors?

e What is impact/benefit of UML?

Findings from survey responses allow us to not only answer the research
questions, but also to compare UML use and impacts of using UML in OSS
projects and related empirical research. Furthermore, a number of recom-
mendations/implications on the use of UML were given to different UML
practitioners.

The main contributions of this paper are:

[a] A large set of OSS projects that use UML, and

[b] Insights from a large scale survey of OSS developers that use UML.

1.4.4 Answers to research questions

Answer to RQ1. “How can we identify UML models in OSS projects?”

Answer for RQ1: Paper A presents a method for automatically identifying
UML class diagram images in any image set. Paper B demonstrates one way
to systematically identify UML models in OSS projects, by joining different
technologies, i.e. mining software repositories, text-based search and the
technique proposed in paper A. In paper C, the data collection method
described in paper B is applied to obtain UML models from all GitHub
repositories. We publish the replication package of our approach online so
that other researchers can replicate these steps ®. There might be alternative
ways to identify UML models, however to our best knowledge, this is the
first time the modeling community can establish a corpus comparable to
collections already exist for source code only, such as Qualitas Corpus.

“Replication package: http://oss.models-db.com/

Answer to RQ2. “How UML is used in OSS projects?”

Findings from paper B help us to answer the research question RQ2 as
follow:

1.4. CONTRIBUTIONS 17

Answer for RQ2: The majority of models are never updated. Those projects
that do update their models, do this regularly. Models can be introduced
during all possible phases in the lifespan of an OSS project. Nevertheless a
peak of model introduction is during the first 10% of the duration of projects.
A few projects are active with UML during their whole lifetime. Most projects
work very shortly on UML, usually at the beginning. We found that 12% of
the distinct models occurred several times. Duplicates are in average spread
across 1.88 projects.

Answer to RQ3. “Why is UML used in OSS projects? What are impacts
of using UML in OSS projects?”
Paper C helps us to answer research question RQ3 as follow:

Answer for RQ3 (1/2) - Why is UML used in OSS projects?

The majority of UML models are intended for creating software designs and
documenting software systems. NUCs use UML models to comprehend a
system and to communicate with team members. Within most software
teams/projects, UML models are used for communication, making architec-
ture decisions and for mentoring. UML designs are adopted in most cases
during the implementation phase. Most often, these designs are implemented
by a group of 2 - 5 persons, including the one who created the designs.

Answer for RQ3 (2/2) - What are the impacts of using UML in OSS projects?
The survey responses suggest that UML is helpful for new contributors to
get up to speed. However, UML does not seem to have the potential to
attract new contributors. One third of the respondents reported changes
of the working routine due to UML, mainly in the planning phase, the
development process and in communication. Most of the reported changes
can be considered positive.

Answer to RQ4. “Can we draw implications for UML use?”

Findings from the survey responses in paper C allow us to answer research
question RQ4 as follow:

Answer for RQ4: By comparing UML use and impacts of using UML in OSS
(from paper C) and other settings (such as industry, from related work), we
were able to see the components where one side could learn from others and
vice versa. In particular:

e To OSS practitioners: Use UML to coordinate team-work!
e To OSS seniors: Provide UML to support junior peers!
e To Industrial companies: Let’s adopt team-modeling!

e To University teachers: Promote consumption of UML models as first
experiences when learning UML)/

18 CHAPTER 1. INTRODUCTION

1.5 Threats to validity

In this section, we give an overview of the threats to the validity of the results
of this thesis, i.e. the answers to research question RQ1 to RQ4. Detailed
threats to validity of included publications are discussed in their corresponding
chapters, from Chapter 2 to Chapter 4.

Research question RQ1 aims to establish a process for identifying UML
models from OSS repositories. We use a constructive method to build the
process. There were a number of threats to construct validity that might
cause the loss of UML files when performing the data collection process. First,
our collection method, which made use of a number of heuristic filters, might
overlook potential UML files which are not complying with searching terms and
file-type list. Second, limitations of the materials that were used to collect data
could probably cause the loss of potential UML models (false-negatives) or the
inclusion of files that do not actually contain UML (false-positives) Examples of
such the limitations are: out-dated GHTorrent SQL dump, incorrect detection
of UML images and the limit of 5000 hits/hour of GitHub API. We partly
mitigate these threats by adding a manual check (validation) to the process.

Research question RQ2 is intended to achieve understanding of the way
UML is used in OSS projects. Answer to RQ2 is drawn from a quantitative
analysis on a set of 21 316 UML models from 3 295 (from 10% of all GitHub
repositories). There are threats that could affect to the construct validity
of this answer. In particular, the loss of potential UML files might affect to
this analysis in the sense that it could make us underestimate the number
of projects with UML models and the number of UML models. Being aware
about this, we focus on getting a descriptive overview of various aspects of
the use of UML in GitHub projects and avoid giving statistic conclusion. We
expect no systematic bias concerning the aspects that we investigated.

Research question RQ3 aims at revealing the rationales behind the use of
UML and impacts of using UML in OSS projects. Answer to this question is
drawn from survey responses of 485 developers in 458 different GitHub projects
that use UML. There is a threat to internal validity. We focus on projects that
do use UML only, to ensure that questioned developers have the experience
of working in a project with UML. To ensure those persons that prefer to
not use UML are not underrepresented, we sent the questionnaire not just to
persons who manipulated UML, but also to contributors who did not change
or introduce UML files (NUCs). Therefore, we believe that our findings still
provide valuable insights.

Research question RQ4 aims to provide implications for UML use. Answer
to this research question is built on understanding about UML use (RQ2)
and impacts of using UML (RQ3). Therefore, we could expect threats to
validity from both answers to RQ2 and RQ3. However, given these threats
are mitigated when answering RQ2 and RQ3, we believe that the posed
implications are still valid and significant.

Finally, answers to all research questions have threats to external validity.
In particular, data in this research was only taken from GitHub, but not other
OSS hosts/platforms such as SourceForge, Google Code, etc. As they differ to
each other in terms of size, functionality, users and users behaviors, there is a
threat that answers for questions RQ1, RQ2, RQ3 and RQ4 might not be

1.6. FUTURE WORK 19

generalized to other platforms. It is possible that UML is used in a different
manner within projects at other platforms. However, as GitHub is one of the
biggest player in the field, we strongly believe that our investigation gives
valuable insights to a majority of the OSS community.

1.6 Future Work

In section 1.6.1, 1.6.2 and 1.6.3, we discuss possible extensions of current
findings towards the pyramid of goals of the PhD study. We suggest directions
that we might not explore ourselves because of scope of this PhD study, but
now become possible with our dataset in section 1.6.4.

1.6.1 Curating the dataset

In this Licentiate thesis, we achieved Goal 1.1 by establishing a dataset of
over 24 000 GitHub projects that use UML and a semi-automated process for
identifying them. The dataset allows us to perform different studies regarding
UML use in OSS projects (as in Paper B and C).

One lesson learned from performing paper B and C is that the projects
in the dataset differ from each other in terms of size, active time, number of
contributors, quality of UML models as well as source code. This is due to
the fact that GitHub is an open space where anyone could create their own
projects for very different purposes. Therefore, it will be necessary to curate
our dataset in the future. This can be done by several ways.

Using image processing techniques. A large amount of UML models
in our dataset are stored in image formats (57 822 models/93 596 models -
61.7%). These models will probably consume the majority of manual effort when
curating the dataset. We believe that image recognition techniques will improve
in future and will help automate this task. For example, text recognition could
be used to detect names and contents of different elements/components of UML
diagrams. Image processing features extracted from UML diagram images can
be used for classifying: reverse engineered diagrams vs forward design diagrams;
layered layout vs non-layered layout (of diagrams), etc.

Extending the dataset. We plan to extend the dataset in the future by
collecting all file types that might contain UML models, i.e. tool-specific file
types such as .plantuml, .argo, .dia and documentation files such as .pdf, .docx,
.doc. Similarly, software models that are not conforming the UML standard,
such as SysML, Capella models can be added to the dataset.

The dataset can also be extended by involving more industrial cases. Cur-
rently, we can see in our dataset a number of industrial projects such as the
ones by HP Helion ? or Azure 4. These cases will allow us to see how UML is
used in a mixed settings of OSS and industrial culture.

3https://github.com/hphelion
‘https://github.com/ashimaabrol/azure-content

https://github.com/hphelion
https://github.com/ashimaabrol/azure-content

20 CHAPTER 1. INTRODUCTION

Enriching the dataset by annotations. It is not just future extensions
that will make the dataset more valuable, but also annotations that can bring
significant value to the dataset. Annotations can be made at projects and
models levels. For example, at the project level, annotations about “project
license”, “business domain”, the “goals of project when using models” (for
design or documentation), “general impacts of using UML” can be employed.

At the models level, annotations on the type, layout style of the UML
model, tools that was used to generate the model, general role of the model,
quality of the model, etc. could be very beneficial.

Manual annotating is known as a time-consuming and prone-to-human-error
process. In the future, we aim at building automated taggers for this task,
starting from basic annotations such as type and layout-style of UML models.

1.6.2 Extending understanding about UML use: success
and failure factors

Within this Licentiate thesis, we achieved goal G2.1 by performing quantitative
and qualitative analyses on the use of UML and impact of using UML in
GitHub projects. As a step further, goal G2.2 aims at eliciting success and
failure factors of UML use. Toward this goal, we would think of several research
possibilities as follow.

Impacts of UML. Paper C reveals impacts of UML to new OSS contributors
and changes in working styles. However, we were unable to see the how UML
models affect the actual implementation of the system. Therefore, a possible
next step is to study in more general how the use of UML modeling impacts the
code structure and whether improvements in software quality and productivity
can be observed when UML is introduced.

Research has been conducted in this direction, such as the one by Karasneh
et al. [41]. They investigated if anti-patterns are propagated from models to
the code, by comparing anti-patterns found in UML models and source code of
10 OSS projects. Our dataset will probably bring more quantitative aspects to
research in the field.

UML use. Paper B and C discover some patterns of using UML as well as
the developer’s rationale behind the UML use. These findings can be extended
in several ways. One way is to conduct follow-up interviews to gain indeed
understanding about specific survey response(s). For example, it is interesting
to know the communication methods in which UML models were discussed,
the CASE tools that were used.

The other extension is to ”learn” characteristics of UML model that were
successfully used in OSS projects. For example, what model layouts developers
use and what average size models have. “Learning” can be done via both
manual observations and machine learning.

In addition, studying UML that occurs in images can also deliver hints on
needs that OSS developers have for visual highlighting strategies. In particular,
during manual check of the image set, we have seen diagrams that were colored
and highlighted. Those diagrams might possibly be “important ones” as well.

1.6. FUTURE WORK 21

<<Java Class>> APF Monitor ,Panda Fesend
. itpiaptmoniancs acuk
(& ResourceMessage e oo for o Host
org fiexiesoner.ra Upcate gl o Extemal
/ Service
M id: UUD 2
TR | AutoPyFaciory X
 etonad g o S]
o timestamp: Date =
<<lava Class>> aumrysoen
(& Allocation 14 Calcuate i
org.fiexiblepower.ai :
of controlSpaceUpdateid: UUID
o isEmergencyAliocation: boolean
[F <<Java Class>>
(© ActuatorAllocation Submit picts
<<JavaClass>> | oy atoralocations | ofa.flexbispousrefibutter
(® BufferAllocation 7 -
; e 0.+ | o actuatorid: int
org. flexiblepower. efi.buffer
o runningModeld: int Prunes job
o startTime: Date - Submit Host
(a) repo flexiblepower/fpai-documentation (b) repo edquist/autopyfactory

(c) repo madhuri2988/Book- Vending-Machine

Figure 1.8: Examples of highlighted UML diagrams - Source: GitHub repos

Figure 1.8 shows examples of three highlighted diagrams from three GitHub
projects.

Moreover, due to the availability of UML models (and projects that they
belong to), we can be able to study how UML models and other artifacts (such
as source code, bug-reports, issues, etc.) related to each other. For example,
we know from the survey responses in paper C that UML models are (partly)
adopted during implementation phase but we do not know how strictly models
are implemented, or to what extent models abstract the code.

Assessment of quality of UML models. One aspect that can affect UML
use/adoption is the quality of UML models. This is the case in one of the
surveyed projects in Paper C. The founder of the GitHub project answered
“I feel that it depends on two things: ... and how elegantly and interesting
the models was structured” as for reason(s) why UML models attracted new
contributors to his/her project. We see a need for evaluating the quality of
UML model and studying its impacts to UML use in software projects.

Evaluating quality of UML models could allow us to classify UML models
by different quality aspects. Furthermore, knowing the quality of a UML model,
we will be able to provide recommendations on how to improve the model. At
the project level, understanding the quality of UML models of a project could
enable to identify the need for actions for quality improvement.

One way to evaluate quality of UML models is to use quality models such
as [42-46]. Figure 1.9 shows the relationship between chrateristics of quality

22 CHAPTER 1. INTRODUCTION

of UML and various software metrics and rules proposed by Lange et al. [42].
Accordingly, communicativeness of a UML model can be measure by calculating
the depth of inheritance tree (DIT) of the model.

Consistency
Communicativeness
Self-Descriptiveness|
Detailedness
Conciseness
Esthetics
Correspondence

Metrics and Rules
Dynamicity

Ratios

DIT

Coupling

Cohesion

Class Complexity
NCU

NUC

Fan-In

Fan-Out

Naming Conventions
Design Patterns
Layout-Guidelines
Multi defs. Vv
ID Coverage

Message needs Method
Code Matching
Comment v

<_|< /| Completeness

<<

S S S S S & [& |« || Balance
<[

<<
<~

< &) &/ & |&J| Complexity

<] | ||Modularity

< o<l
<

Figure 1.9: Mapping of model quality chracteristics and software metrics.
Source: Table 5, paper [42]

1.6.3 Building guidelines for UML use

In paper C, we provide implications for UML use, targeted software practitioners
and educators. In the future, we aim at building guidelines which have the
following properties:

Content. Guidelines will be provided to specific subjects based on two
sources of understanding: i) understanding about common practices of UML
use/adoption observed from a large number of software projects; and ii) un-
derstanding about the subjects (individuals or teams/companies) in terms
of current use of UML, expected level of UML adoption. The guidelines are
expected to cover:

e Methods to assess current status of UML use within a software develop-
ment team/project. This will be provided in form of a check list or an
analytical tool;

e Common mistakes on applying UML;

e Success stories of applying UML in a software projects;

1.6. FUTURE WORK 23

Characteristics. First, the guidelines should be actionable. Each guide-
line should contain the following parts: i) Targeted subjects (individuals or
teams/companies); ii) Targeted context and problem; iii) Expected outcomes;
iv) Guideline in action; v) Common mistakes; vi) Examples from real-life
projects.

Second, guidelines should be evidence-based. All guidelines can be traced
back to empirical studies and real-life software projects that support them.

1.6.4 Other directions

Our dataset comprises a large number of UML models and meta-data of the
projects that they belong to. This dataset is expected to be a valuable source
for empirical research in the field, such as designcode traceability, software
quality assurance, etc. Below, we present two general cases where our dataset
could be useful:

Evaluation of scientific approaches and modeling tools. Constructive
research on software modeling often has the problem that there are not enough
real cases of models to evaluate newly developed approaches and techniques.
Currently, this limitation is worked around on the basis of toy examples or
artificially generated models. In exceptional cases, researchers are allowed to use
obfuscated industrial models or models created with the help of practitioners
for the purpose of the evaluation [47]. Our dataset provides real cases of UML
models in machine readable form. Professional tool vendors, who provide case
tools for modeling, might be able to use the dataset to test new features on
real data e.g. layout generation.

UML for education. Software modeling and UML have been taught at
Universities for long time. Novice software designers or students struggle with
different problems during their training tasks or first software development
assignments [48-50]. A recent research by Karasneh et al. shows that using
examples could help students who are novices with UML modeling to create
better designs [51]. This is aligned with our implication for university teachers
in paper C, that teachers should promote students to consume UML models
before creating models. Our dataset provides UML models in their real-life
settings. Teachers and students can therefore use this dataset as a basis to
discuss and explore not only UML syntax but also its use.

24

CHAPTER 1.

INTRODUCTION

Chapter 2

Paper A

Automatic Classification of UML Class Diagrams from Im-
ages
T. Ho-Quang, M.R.V. Chaudron, I. Samelsson, J. Hjaltason, B. Karas-

neh, H. Osman

21st Asia-Pacific Software Engineering Conference (APSEC 2014),
Jeju, Korea, December 1 - December 4, 201,.

25

Abstract

Graphical modelling of various aspects of software and systems is a common
part of software development. UML is the de-facto standard for various types of
software models. To be able to research UML, academia needs to have a corpus
of UML models. For building such a database, an automated system that
has the ability to classify UML class diagram images would be very beneficial,
since a large portion of UML class diagrams (UML CDs) is available as images
on the Internet. In this study, we propose 23 image-features and investigate
the use of these features for the purpose of classifying UML CD images. We
analyse the performance of the features and assess their contribution based on
their Information Gain Attribute Evaluation scores. We study specificity and
sensitivity scores of six classification algorithms on a set of 1300 images. We
found that 19 out of 23 introduced features can be considered as influential
predictors for classifying UML CD images. Through the six algorithms, the
prediction rate achieves nearly 96% correctness for UML-CD and 91% of
correctness for non-UML CD.

Keywords: Software Engineering; UML; UML class diagram; classification;
machine learning; feature extraction.

26 CHAPTER 2. PAPER A

2.1 Introduction

In software development, UML class diagrams (CD) are used to design and
illustrate the structure of software. They are a very important tool when
engineers need to understand the basic structure of a system, e.g. when a
new engineer, that is unfamiliar with a system, needs to maintain it. UML
CDs are becoming ever more prevalent within industry and academia, where
model-driven development is becoming a common practice, and it is widely
agreed that they have become an integral part [52,53]. Accordingly, studying
UML models and sharing of modeling artefacts [54] is an emerging need in
recent years. In order to facilitate this need, a set of UML models should
be collected in some forms of repository. Recently, both commercial UML
repositories [55,56] as well as general model repositories [19] have been built. B.
Karasneh et.al [20,57,58] proposed an automated system (named Img2UML),
which has the ability to extract UML CDs from images and share these via an
online repository.

Among these repositories, enriching the one in [57] is easier, because a large
portion of UML CDs is available as images on the Internet. However, the
problem is that the automated collection of images needs a classifier to identify
which image is related or not. We consider two scenarios where the classifier
could be very useful:

e Users want to share their UML diagrams in image formats to the reposi-
tory; and

e Automatic collection of images from various online sources into the
repository. We think about several types of sources: image crawler (e.g.
Google Image Search); shared image sets (from academia), etc.

Creation of such a classifier will bring a significant opportunity to automate
the repositorys collection phase. That is our main motivation to conduct this
research.

Research Problem. This paper specifically aims at providing suitable fea-
tures and classification algorithms to decide which images should be considered
as UML CDs and which images should be left out. The classifier operates
by extracting relevant information about the image and processing that infor-
mation with a machine learner. The classifier is expected to have ability of
inclusion of UML CD images and exclusion of non-UML CD images. Among
these tasks, eliminating non-UML CD images has greater value than including
UML CD images.

Since the input is images, information regarding UML CD that helps
classifying the images needs to be discovered through image processing. This
paper focusses on using basic image processing features as predictors (input
variables used by the classification algorithm). The advantage of using the
features is that these can be obtained very fast with little effort. This fits our
objective of creating a fast method that will be of practical use to automated
classification system.

We analyse the predictive power of the features to discover the influence
of individual feature on the performance of the classifier. On the other hand,

2.2. RELATED WORK 27

to find the most suitable set of features, we prepare some sets of features and
evaluating their classification performance.

In addition, with the aim at finding the most suitable classification algorithm,
we make a comparison between candidate algorithms based on their classification
performance. Costa et.al [59] investigated a range of measures that can be
used for evaluating classification performance. In this study, the measures are
specifically related to algorithms ability to eliminate non-UML CDs.

Contribution. The contributions of this study are as below:

e Proposal of a set of features for UML CD inclusion/exclusion prediction.
It consists of 23 features formulated from the image processing properties.
The performance of the features is considered as their importance to the
classifier. The suitability of four subsets of features is discovered as well.

e Evaluation on classification performance of six algorithms in terms of
classifying accuracy and robustness. Candidate set of algorithms includes:
J48 Decision Tree, Logistic Regression, Decision Tables, Random Forests

and SVM, and REP Tree.

e Our dataset including images together with the list of extracted features
are freely provided in order for researchers to test and make comparisons.

The remainder of this paper is structured as follow: Section 2.2 discusses
the related research and section 2.3 indicates research questions. Section 2.4
explains the approach while section 2.5 describes the experiment. We present
the analysis of results in section 2.6. Section 2.7 discusses our findings and
section 2.8 ends with conclusions and future work.

2.2 Related Work

Recognition of special types of graphics is an area of intensive research. A
survey of diagrams recognition and treatment can be found in [60]. UML CDs
are a type of diagram that graphically represents classes and their relationships
to one another. The majority of existing approaches to UML diagram image
classification and understanding were developed within the scenario of image
feature extraction. This section is aimed at discussing prior research on the
topic, with focus on the fields of image classification and UML diagram feature
extraction.

2.2.1 Image classification

Image classification refers to the labelling of images into one of a number
of predefined categories. D. Lu et.al. [61] introduced major steps for image
classification process. The steps may include 1) Selection of training samples; 2)
Image pre-processing; 3) feature extraction; 4) Selection of suitable classification
approaches and 5) Classification performance assessment. In this study, we
follow these steps to build our classifier.

Much research has been done in this field, especially for classifying remote-
sensing images [62]. With regards to diagrams, chart image classification seems

28 CHAPTER 2. PAPER A

to be one of the most concerned topic [63]. However, until now (to the best of
our knowledge) there is no study about classifying UML class diagram images.

2.2.2 Diagram feature extraction

Recently, research has been conducted in this field of study, varying in method
and approach. B. Messmer et.al. [64] proposed a system for recognizing and
automatic learning of sketched graphic symbols in engineering drawings. The
objective of this research is to combine pattern recognition techniques with
machine learning concepts in order to be able to learn and recognize new
symbols in engineering diagrams. In [65-67], a range of methods for online
recognition of entirely hand drawn UML diagrams were introduced. However,
since the methods were used information regarding the movement of drawing,
which are not available in images, sketching tools cannot be carried over to
recognizing UML models in final/static images.

L. Fu et.al. [68] presented a method for converting image based engineering
diagrams (including UML models) into attributed graphs which can be used
for content-based retrieval.

B. Karasneh et.al. [58] proposed a tool to extract class diagrams from
computer-generated images. The tool recognizes UML class diagram properties
and translates them into XMI format. Geometric-based feature as well as
texture features were detected.

2.3 Research Questions

This section describes our main research question and three sub-questions. The
main question of this research is as follows: How can classification of UML
class diagram images be automated?

In order to answer this question, these sub-questions need to be figured out:

RQ1. What is the performance of image processing features in predicting
the presence of UML CD?

RQ2. What is the performance of the classification algorithms in using the
features as predictors?

RQ3. Which subset of the proposed features performs the best in classifying
UML CDs?

2.4 Approach

In this section, we describe our approach in conducting this experiment.

2.4.1 Overall framework

The overall framework of this experiment is shown in Figure 2.1. To achieve
the classifier, we use a machine learning approach.

Input for the process are images (Step 1). The images are then processed
by applying a number of sub processes (Step 2) which can be listed as: Recog-
nising contours and shapes; Recognising lines; and joining lines in form of
UML connections. Additionally, to avoid prolonged processing time on complex

2.4. APPROACH 29

(om (5) Analyse result)

Image —
@ Processing 4) Classification

Contours & Shapes
Horiz. & Vert. lines UML CD features/metrics
C Rectangles D) |
C Joining lines) |———pp 3) Feature extraction

Figure 2.1: Overall framework

photographs, images have to pass a pre-check before being processed. Sec-
tion 2.4.2 describes the process in details. The outputs of the process are basic
characteristics of detected objects (such as size, area, etc.).

In the feature extraction phase (Step 3), information received from the
previous step is calculated into 23 invented features/metrics. The output data
of the process is represented as float numbers and is much more complicated
when metrics comparing with its input data. Detailed information about the
features is described in Section 2.4.3.

The features are then used as input data for a UML class diagram classifier
(Step 4), which was trained by using our 1300-image-set in conjunction with
classification algorithms. The processes of training and predicting is also
discussed in the section 2.4.4.

Finally, at the end of the above steps (Step 5), we evaluate performance of
the said features and algorithms.

2.4.2 Image processing

This sub-section shows how we process an input image for the purpose of
extracting features. The process includes two main phases as follow:

Pre-check. In order to avoid prolonged processing time on complex pho-
tographs, images have to pass a pre-check before being processed as follows:

e The most used colour in the image has to cover at least 10

e The images colour-histogram median value must be above 100.

Image processing. Shape and line extraction is carried out using three
external algorithms: Hough transform (HT) [69]; Suzuki85 (S85) [70]; and
RamerDouglasPeucker (RDP) [71]. The contours that 585 finds are used to
find various shapes and are subsequently broken down into straight lines. Using
the algorithm in conjunction with HT leads to better detection of lines. The
lines are then processed, so that horizontal and vertical lines, that are on the
same axes and represent the same line, are joined together into a single line.
Rectangles that are not caught by using S85 are then extracted by finding

30 CHAPTER 2. PAPER A

horizontal lines that are parallel and in the same position on the x-axis, and
have the same two vertical lines intersecting them on each end. RDP is used
to find different types of polygon: rectangles, rhombuses, triangles and ellipses.

TP

i

D. Joined lines #1 E. Joined lines #2 F. Extracted elements

Figure 2.2: Image processing

Figure 2.2 shows the basic steps of the image processing. As can be seen in
picture B in Figure 2.2, with HT, many of the rectangle lines are not extracted,
or the extracted lines are segmented and/or incomplete. Such lines make it
very difficult to find the rectangles in the image. S85 returns an unlimited
amount of points in each contour. The extracted contours from S85 can be
seen in picture C. By examining that picture, it is apparent that the algorithm
catches more of the lines than HT. The lines are joined in three phases:

(1) The contours that are found are split into lines, and horizontal and
vertical lines are extracted;

(2) Horizontal and vertical lines that HT finds are collected and joined with
(L)

(3) Lines, found by HT, that are not vertical or horizontal are collected and
joined with (1).

After the phases (1) and (2) (picture D), rectangles are collected through
the above-mentioned method. After the rectangles have been collected, phase
(3) (joining lines; picture E) is conducted, and then all lines within shapes are
removed, results in picture F.

2.4.3 Feature extraction

As a diagram, a UML CD image can be distinguished from other images by
detecting diagrams main characteristics such as lines, rectangles, number of
colours, etc. The task becomes more complicated when recognising UML CD
from another type of (engineering) diagram. This section explains the problems
and describes the features we extract for solving this classification problem in
detail.

2.4. APPROACH 31

2.4.3.1 Which features set UML CD apart from other diagrams?

HTML l Programming for the Web

MySQL
Instaltation

; N\ [:1
[Poscasing | [css | PHP | Fon SO

Assistants

Figure 2.3: Diagram examples.
(1) UML Class diagram; (2) UML Sequence diagram; (3) Flow chart; (4)
E/R model

Diagrams come in all shapes and forms (Figure 2.3), and for this reason, it
was important to consider not only CDs, but also other different but similar
diagrams such as Entityrelationship models (E/R), UML Sequence diagrams
and Flowcharts amongst others, when finding the right features.

Three key factors that can be used to describe UML CDs are: (1) Classes,
in the form of rectangles; (2) the classes are related to each other in the form of
connecting lines; and (3) the classes are divided into sections with the name of
the class, attributes and operations. The 3rd describing factor is, though, not
universal. It does not apply to all classes within the diagram, but in almost
all UML CDs there are classes divided in this manner. As can be seen in
Figure 1, the 1st and 2nd of the defined characteristics of UML Class diagrams
can apply to many types of diagrams or charts. Because of that it was also
important to extract more information from the image, than only information
that is descriptive of CD. As a result, other geometrical shapes (i.e. ellipses,
rhombuses, and triangles) and statistical metrics (e.g. distribution of shapes)
had to be extracted as well.

In order to obtain a general solution, we considered it important that the
input images cover wide ranges of sizes, colours and number of objects. In
order to make our features comparable, we use normalisation: all extracted
features are represented in the form of ratios and percentages.

2.4.3.2 Extraction features in details

There are 23 features that are calculated from image processing images. Ta-
ble 2.1 describes the features in details.

Table 2.1: Extracted Features

Feat. | Name Description
Fo1 Rectangles portion of image, % | Dividing the sum of the area of all the rectangles with the area of the image
F02 Rectangle size variation, ratio Dividing the rectangle size standard deviation with the rectangle average size
Fo3 The image is divided into four equally sized sections and the area of the rects
_06 Rectangle distribution, % inside the sections is then divided by the total area of the rects. The 4 sections
sum up to 100%
. Calculated by counting all rectangles that are connected to at least one rect.,
Fo7 Rectangle connections, % and dividing};hat num%oer by the %otal amount of rectangles in the image
FO8 The rectangles are split into three groups, with rectangles that have: no dividing
10 Rectangle dividing lines, % lines (F08); one or two dividing lines (F09); or three or more dividing lines (F10).
This produces 03 numbers that represent the percentage of rects. within each group
. Sides of rectangles, horizontal (F11) and vertical (F12), that are aligned with sides
Fil Rect.angles hormontal}y/ of other rectaniles are counted(. Th)e numbers are(divizied with the iumber of detected
F12 vertically aligned, ratio
rect. in the image, resulting in two ratios on rect. horizontal & vertical alignments
F13 | Average horizontal/ Average size of horizontal (F13) and vertical (F14) lines that are larger than 2/3 of the
F14 vertical line size, ratio images width or height, divided by the images width or height, respectively
F15 Parent rectangles in Rectangles that have rectangles within them can possibly be packages. This feature is
parent rectangles, % the percentage of the area of those parent rectangles that is within other parent rects.
F16 Rectangles in rectangles, % This is calculated in the same manner as F15, but with rects., instead of parent rects.
F17 Rectangles height-width ratio The average ratio between the height of the rectangles and the width of the rects.
F18 Geometrical shapes portion The same as F01, but with rhombuses, triangles and ellipses
Lines connecting geometrical The number of connecting lines from shapes, other than rectangles, divided by the
F19 . . .
shapes, ratio number of detected shapes in the image
F20 Noise, % Detected lines that are outside of rectangles, divided by the number of all lines
F21 Three most frequent colours in the image are found. Then a percentage out of all
Colour frequency, % . .
-23 appearing colours is found for the three colours

48

V 44dvVd ¢ H4HLdVHO

2.4. APPROACH 33

2.4.4 UML CD classification

This subsection explains how we choose a classifier. The process includes two
main tasks: 1) Choosing the most suitable classification algorithm; 2) Training
for the classifier with the chosen algorithm. The influence of extracted features
and correlation-based feature-sets are discovered as well.

2.4.4.1 Choosing the most suitable classification algorithm

We selected the algorithms that represent different approaches in classifica-
tion. The six classification algorithms are listed as: (1) Decision Table (DT);
(2) Random Forest (RF); (3) Support Vector Machine (SVM); (4) Logistic
Regression (LR); (5) REP-Tree (RT) and (6) J48 Decision Tree (J48) [40].

At first, we use Information Gain Attribute Evaluator (InfoGain) to find out
the influence of extracted features. Secondly, by applying the Correlation-base
feature selection (CFS) algorithm described in [72] on the extracted features,
we prepared several sets of predictors. The set of predictors used for this
evaluation are top 3, top 6, top 9 and top-all of most suitable features. Then,
we apply these sets of features to all classification algorithms to get their
false-positive (FP) and true-positive (TP) rates on our dataset.

2.4.4.2 Training classifier

This sub-section shows the phase of training the UML CD classifier. To that
end, we use our 1300-image-set as training data and a supervised learning
approach. The collection of the image-set and configurations for training and
testing set are described in 2.5.1 and 2.5.3, respectively.

(a) Training

features (f, ..., fn)

Machine leaming
algorithm(s)

Feature
extracton

1
T

(b) Testing produces

YES

Dataset Feature Classifier
extraction

NO

Figure 2.4: Supervised classification - (a) Training phase; (b) Predicting phase

As shown in the Figure 2.4, during the training phase, the feature extraction
is to convert each input image to a feature set as mentioned in section 2.4.3.
Feature sets are then inputted into the chosen machine learning algorithm to
train a model. During the prediction phase, the same feature extraction is
applied to the test data, and the extracted feature sets are input into the model
to generate the predicted labels.

34 CHAPTER 2. PAPER A

2.4.5 Analyse Result

The InfoGain measures and the FP and TP rates from the classification process
are analysed. We compare the performance of the evaluated classification
algorithms across all datasets. The detailed analysis is demonstrated in the
section 2.6 of this paper.

2.5 Experiment Description

This section explains the dataset that we used in this study and the evaluation
measure for analysing the results.

2.5.1 Dataset

The images that were used for training machine leaner collected by using Google
Image Search. The image collection consisted of two separate accumulation
phases: collecting images that represented CDs; and collecting non-CD images
and images that represented similar diagrams.

To search for CDs the phrase UML Class diagram was used. Various types
of diagram such as blueprint, sequence diagram, chart, flow chart, E/R model,
and architectural diagram were found by their corresponded phrases.

It was verified that no duplicates are in the set. The end-result was a
collection of 650 UML CDs and 650 non-UML diagrams (1300 images in total).
The non-UML images include 60 sequence diagrams, 34 use-cases, 61 ER
diagrams, 80 architectural diagrams and 155 charts. Our dataset together
with the results that are presented later in the paper can be found online via:
http://bitly.com/dtsUMLClassifier.

2.5.2 Evaluation measures

This subsection describes the evaluation measures used in this experiment. The
evaluation measures are the following:

2.5.2.1 Features Predictive Performance

In order to measure predictive performance of extracted features we uses the
information gain with respect to the class.

The Information Gain Attribute Evaluation (InfoGain Attribute Evaluation)
is a method that evaluates the worth of an attribute by measuring the infor-
mation gain with respect to the class [73]. This method is able to evaluate the
predictive power of an attribute (an extracted feature in our case). Accordingly,
we use the method to identify the influence of a feature in UML CD prediction.
The InfoGain Attribute Evaluation produce a value from 0 to 1 in which a
higher value indicates a stronger influence.

2.5.2.2 Classification Algorithm Performance

We use a confusion matrix to evaluate the machine learning classification
algorithms. Table 2.2 shows a confusion matrix. In this table, for the case of
the actual data is positive (Y), TP represents the number of correct predictions

2.6. ANALYSIS OF RESULTS 35

(true positive) and FN represents the number of incorrect predictions (false
negative) by the classification algorithms. In the case of the actual data is
negative (N), FP represents the incorrect predictions (false positive) while TN
represents correct predictions (true negative).

Table 2.2: Confusion matrix

Actual | Prediction Result
Result | Y N

Y TP FN

N FP TN

We use Sensitivity and Specificity to evaluate the performance of classifica-
tion algorithms. Sensitivity (or True Positive Rate) measures the proportion of
images, which actually are UML CDs, are correctly identified as UML CDs.
Specificity (or True Negative Rate) denotes the proportion of actual non-UML
CD images that are correctly classified as non-UML CDs. In other words, while
specificity represents the ability of excluding non-UML CD images, sensitivity
represents the ability of including UML CD images. The two metrics are
calculated from the confusion matrix as below:

specificity = TNR = % ; sensitivity = TPR = TPZ%

For our purpose, the exclusion of non-UML CDs is more important than the
inclusion of UML CDs. As a result, specificity is considered more important
than sensitivity. The two measures range from 0% to 100%. The higher the
value of the measures, the better classification algorithm.

2.5.3 Experiment settings

This subsection describes the experiment setting in this study. We choose
10-fold cross-validation [74] for performance evaluation where all images are
randomly split into ten exclusive folds. For each of the ten experiments,
typically a single fold is retained as a validation data, and the remaining nine
folds are used as training data. The default settings suggested from WEKA
were used for classification algorithms.

2.6 Analysis Of Results

This section describes the analysis of results. Every subsection is presented to
answer the questions specified in Section 2.3.

2.6.1 RQ1: Influence of features

The overall results for this evaluation are illustrated in Table 2.3 in which
features are sorted by descending order of InfoGain values.

Overall, 19 out of 23 proposed features are considered as influential pre-
dictors (InfoGain value § 0) for classifying UML CD images. F09 and F08
(ranked first and fifth respectively) are features formulated by calculating
splitting lines in the rectangle. Thus, this result shows that splitting lines
the rectangle gives a high impact in predicting class diagrams from images.

36 CHAPTER 2. PAPER A

Table 2.3: Information Gain

No. | Features | Value || No. | Features | Value
1 F09 0.473 13 F18 0.111
2 F20 0.433 14 F14 0.086
3 FO1 0.374 15 F10 0.07
4 F13 0.352 16 F21 0.055
5 FO8 0.306 17 F19 0.052
6 F02 0.302 18 F22 0.039
7 FO7 0.255 19 F15 0.008
8 F04 0.241 20 F23 0
9 FO05 0.227 21 F16 0
10 FO3 0.208 22 F12 0
11 F06 0.206 23 F11 0
12 F17 0.201
Note: Features that have InfoGain value greater than 0 are
highlighted

Another important feature is F'20, which is defined to eliminate those images
that have too much information outside rectangles. Also, F0I (ranked third)
which denotes rectangle coverage, is one of the most vital features.

F23, F16, F12 and F11 have a trivial impact on the classification. Thus,
these features are then omitted from the feature-set.

2.6.2 RQ2: Classification algorithms performance

The classification algorithms were evaluated by measuring specificity and
sensitivity over 10 runs for the feature set.

Table 2.4: Specificity and Sensitivity Scores

SVM | RF J48 LR RT DT
0.89 | 0.904 | 0.901 | 0.914 | 0.901 | 0.895
0.04 | 0.04 | 0.04 | 0.03 | 0.04 | 0.04
0.924 [0.959 | 0.925 | 0.902 | 0.92 | 0.919
0.04 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04

Spec.

Sens.

Table 2.5: Confusion matrix Logistic Regression Classification

Actual | Prediction Result
Result | Y N

Y 596 54

N 63 587

Table 2.4 shows the evaluation result. The first row and the second row
show specificity score and sensitivity score, respectively. Followers are their
standard deviation.

2.6. ANALYSIS OF RESULTS 37

As can be seen in the Table IV, in term of sensitivity, Random Forest shows
an excellent result with almost 96% UML CDs images were correctly classified.
This follows with J/8 and SVM with 92.5% and 92% respectively.

On the other hand, in term of specificity. LR performed the best with
91.4% of correctly classified non-UML CDs images. SVM performed the worst
specificity with 89%.

The results also show that the standard deviation on the results are rela-
tively small (0.01- 0.05) that indicate the results are considered reliable (small
variation). In summary, LR performs the best in term of eliminating non-UML
CD images. Accordingly, LR is considered as the best classification algorithm
for our classifier with mentioned-extraction features.

The confusion matrix in Table 2.5 illustrates the classification result gener-
ated by applying the LR classifier to our dataset. From total of 1300 images,
1183 images were classified correctly. 596 out of 650 UML CD images were
correctly predicted as UML CDs. Also 587 out of 650 non-UML CD images
were correctly recommended as non-UML CDs. On the other hand, among 117
incorrectly classified images, there was 54 false positives (predicted as UML
CDs, but actually non-UML CDs) and 63 false negatives.

2.6.3 RQ3: Set of features Performance

In this subsection, we describe the sets of features that were used as candidate
dataset and the comparison between these sets in terms of the performance that
classification algorithms can reach on them. Again, specificity and sensitivity
are the two measures that are used to evaluate the performance of the feature
set.

For this evaluation, we form four feature-sets by grouping the features into
3, 6, 9 and all features. For groups of feature that have 3, 6, and 9 features, we
used Correlation-based Feature Selection (CFS) Evaluator to select the suitable
features. These sets are as follows:

e Feature set 0 (FS0) = All features

e Feature set 1 (FS1) = F01, F09, F13

e Feature set 2 (FS2) = F01, F02, F09, F13, F18, F20

e Feature set 3 (FS3) = F01, F02, F06, F07, F08, F09, F13, F18, F20

As can be seen in Table 2.6, the set of all feature (F.S0) shows a more positive
result compared with other sets in almost of all classification algorithms. Two
out of six classification algorithms gained the best result on both specificity and
sensitivity scores with the set of all features. With regards to specificity score,
FS0 is the most suitable feature-set for SVM, LR and DT, while RF, J48 and
DT perform the best on the 6-feature-set (FS2). In terms of sensitivity, F.S0
is considerably higher than other sets as it is the best choice for 4 algorithms.

With focus on the best algorithm (Logistic Regression) that is analysed
above, FS0 is the best choice in both specificity and sensitivity, at 91.4% and
90.2%, respectively.

38 CHAPTER 2. PAPER A

Table 2.6: Specificity and Sensitivity Scores Across Datasets

SVM RF J48 LR RT DT
0.890 + 0.904 0.901 0.914 + 0.901 0.895 +
0.924 * | 0.959 * | 0.925* | 0.902 * 0.92 0.919
0.873 0.898 0.908 0.861 0.903 0.895 +

FSo

FS1 0.839 0.926 0.92 0.858 0.919 0.921 *

FS2 0.874 | 0.907 + | 0.916 + 0.882 0.905 0.895 +
0.894 0.947 0.922 0.853 0.924 * 0.919

FS3 0.885 0.906 0.908 0.901 0.907 + | 0.895 +

0.915 0.949 0.925 * 0.892 0.922 0.919

Note: For each feature set: The first row is specificity and the second row is
sensitivity cells that have highest value across all algorithms are highlighted
as yellow and orange, respectively. For each algorithm: cells that have highest
specificity and sensitivity are marked + and *, respectively.

2.7 Discussion

In this section, we summarize and explain the result in the previous section.
We also explain the threats to validity of this study.

2.7.1 Image Processing Time

The image processing and input image-set are described in the Section 2.4.2
and Section 2.5.1, respectively. Overall, the average processing time is 5.84
seconds per image. Those images that have big sizes and large amounts of lines
need much time to be processed.

In order to discover extraction times dependence on images size and number
of lines, we use Pearsons correlation tests. Obtained results show that there is
a moderate relationship between execution time and images pixel size (corr. =
0.535). Meanwhile, execution time has a relatively high correlation, at 0.85,
with the number of lines. Figure 2.6 indicates the relationship along with its
linear model.

300
250 —
200
150 —
100

Execution Time (s)

50 >

0 | cm—

T T T T T T
0 500 1000 1500 2000 2500 3000

Number of Lines

Figure 2.5: Relationship between exec. time and number of extraction lines

As the above discussion attests, processing on architectural diagrams, maps
and blueprints might take a lot of time and system resource. Among the 4 most

2.7. DISCUSSION 39

§ . =
. L e

t=1642s
n=2607
s=2106 x 1402

t=3159s
n=3085
s = 4758 x 3404

t=200s
n=2663
s =2260 x 1942

t=155s
n= 1854
s = 3075 x 2326

Figure 2.6: The most time-consuming cases
(t) extraction time; (n) no. of extraction lines; (s) image size in pixel

time-consuming images showed in the Figure 2.6, only the 2nd one is a UML CD.
Therefore, an early recognition of such the images will significantly decrease
the execution time. It can be done by applying template-based matching and
image pyramids [75].

2.7.2 Image Processing Features Performance

Table 2.7 shows the prediction performance of the six classification algorithms
using the features. The classification performance ranges from 89% to 91.4% in
terms of specificity and from 90.2% to 95.9% in terms of sensitivity. Therefore,
we are certain that the proposed features are suitable for classifying UML
diagram based on the input images.

The four features whose InfoGain values equal 0 can be considered of
too small of influence and can be excluded from the feature set. We check
this exclusion by comparing the performance of the classification algorithms
on the two features sets: one is full-feature set (so called FS23), and the
other is the reduced-feature set (so called FS19). The result is shown on
Table 2.7 explicitly shows that the exclusion helps the classification algorithms
to improve their performance of eliminating non-UML CDs. Comparing with
FS523, while sensitivity scores recorded on FS19 slightly decrease with at most
0.2% through all algorithms, specificity values increase from 0.2% to 0.7% on 3
out of 6 algorithms.

Table 2.7: Comparision between FS23 and FS19

SVM | RF J48 LR RT DT
FS23 0.895 | 0.902 | 0.901 | 0.906 | 0.899 | 0.898
0.929 | 0.961 | 0.927 | 0.903 | 0.92 | 0.919
FS19 0.89 | 0.904 | 0.901 | 0.914 | 0.901 | 0.895
0.924 | 0.959 | 0.925 | 0.902 | 0.92 | 0.919

On the other hand, results from Table III show that features which relate to
classs geometric shapes are the most powerful. 8 out of 10 top placed features
are about rectangles (distribution, divided lines inside). The two other features
are related to connecting lines and information outside rectangles.

40 CHAPTER 2. PAPER A

2.7.3 Classification Algorithms

The results show that LR is a suitable classification algorithm in this study as
it produces the best specificity score. However, as can be seen from Table 2.7,
LR is not the best classification algorithm for all feature sets. There is a
remarkable decrease when applying LR on FS1, as its sensitivity is 5.3% less
than FS0. The most suitable algorithm for FS1, FS2 and FS3 is J48 Decision
Tree whose specificity scores ranges from 90.8% to 91.6%.

In term of sensitivity, RF maintains its first rank and a reliable performance
through all feature sets. Its sensitivity scores range from 94.7% to 95.9% with
a small standard deviation at 3%. From this analysis, we can conclude that
RF is the most suitable algorithm for detecting the UML CDs.

2.7.4 Threats to validity
2.7.4.1 Threats to Internal Validity

Image processing phase is done by applying a process mentioned in the sec-
tion 2.4.2. However, the process itself has some weakness which is formed by
HT, S85, RDPs disadvantages [76]. The weakness may causes misdetection
of classes and connecting lines. Accordingly, the features that are extracted
from the images may not be accurate. Picture F, Figure 2.2 is an example of a
misdetection: 2 classes are missing in the final step. Using the algorithms in
combination with line-segment merging/grouping algorithms such as [77,78]
should improve the weakness.

2.7.4.2 Threats to External Validity

The class diagrams that we used are collected from the Internet. We believe they
are representative for the syntactical representation used in various modeling
tools including generic drawing tools. One threat to validity is that we have not
included industrial class diagrams. In discussions about this research, people
claim these industrial diagrams could be larger in terms of number of classes
per diagram. On the other hand, our experience is that large diagrams are
decomposed into diagrams that consist of around 10 12 classes per diagram.

2.7.4.3 Threats to Construct Validity

To measure the classification algorithm performance, we use specificity and
sensitivity as our evaluation measures. Specificity and sensitivity can be
considered as standard measures in data mining [40]. Therefore, we believe
there is little threat to construct validity.

2.8 Conclusions and Future Work

This paper presents an automated classification method for images that rep-
resent UML Class diagram. To this end, we discuss features extracted from
images as input to the classifier for UML class diagrams. In this study, we
introduced 23 features that capture statistical and geometric characteristics of
diagrams. We find that using these metrics as predictors for the classification

2.8. CONCLUSIONS AND FUTURE WORK 41

reaches 95.9% and 91.4% (respectively) of correct classification of input images
for UML CD and non-UML CD. For this study 1300 different images are col-
lected from the Internet through Google Image Search. We make this dataset
available as a benchmark.

We take a step further by examining the classification performance by
considering different sets of features. We find out that the full-feature set is
the most suitable predictors for most of all classification algorithms. However,
we argue that using the full-feature set leads to a time-consuming feature
extraction. Therefore, in order to speed up the classification, using other
smaller feature-set like FiS2 or FS3 have only a little lower correct prediction
rate, but are faster to compute.

We also study which classification algorithms perform the best on classifying
UML CDs. To do that, we calculate and compare their classification perfor-
mance based on the two measures specificity and sensitivity. Amongst these two
measures, specificity is in our case considered more important than sensitivity.
Logistic Regression is found to produce the highest correct predication rate, at
91.4%, on identifying non-UML CDs.

Evaluating the performance of classification through the feature sets allows
us to identify the most reliable classification algorithms. Random Forest is
the most reliable algorithm in term of detecting UML CDs. Meanwhile, J48
Decision Tree obtains top specificity score on 3 subsets of features.

For future work, we will try to improve the performance of the classifier
using features based on text-recognition. Another direction would be to try to
get a semantic understanding of the diagrams. This could for instance allow
the classifier to distinguish organizational charts from class diagrams even if
these organizational diagrams cannot formally be discriminated from UML CD
syntax.

Also, our classifier allows us to think about a UML CD Crawler which we
can use to build a larger collection of UML CDs. Moreover, we consider a
classifier for identifying UML sequence diagrams.

42

CHAPTER 2. PAPER A

Chapter 3

Paper B

The Quest for Open Source Projects that Use UML: Min-
ing GitHub

R. Hebig, T. Ho-Quang, M.R.V. Chaudron, G. Robles, F. Miguel An-
gel

ACM/IEEE 19th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2016), Saint-Malo, France,
October 2 - October 7, 2016.

43

Abstract

Context: While industrial use of UML was studied, little is known about
UML use in Free/Open Source Software (FOSS) projects.

Goal: We aim at systematically mining GitHub projects to answer the ques-
tion when models, if used, are created and updated throughout the whole
project’s life-span.

Method: We present a semi-automated approach to collect UML stored in
images, .xmi, and .uml files and scanned ten percent of all GitHub projects
(1,24 million). Our focus was on number and role of contributors that cre-
ated/updated models and the time span during which this happened.

Results: We identified and studied 21 316 UML diagrams within 3 295
projects.

Conclusion: Creating/updating of UML happens most often during a very
short phase at the project start. 12% of the distinct models occurred several
times. Duplicates are in average spread across 1,88 projects. Finally, we
contribute a list of GitHub projects that include UML files.

Keywords: UML, open source, free software, GitHub, mining software repos-
itories

44 CHAPTER 3. PAPER B

3.1 Introduction

The Unified modeling language (UML) provides the facility for software engi-
neers to specify, construct, visualize and document the artifacts of a software-
intensive system and to facilitate communication of ideas [79]. For commercial
software development, the use of UML has been introduced and commonly
accepted to be a prescribed part of a company-wide software development
process.

When it comes to Free/Open Source Software (FOSS) development, char-
acterized by dynamism and distributed workplaces, code remains the key
development artifact [32]. Little is known about the use of UML in open source.
Researchers in the area of modeling in software engineering have performed
some efforts to collect examples of models and of projects that use modelling.
However the results are often limited [14]. For example, the Repository for
Model Driven Development (ReMoDD) [19] is an initiative driven by an inter-
national consortium of leading researchers in the field of modeling. Nevertheless
its content is growing at a low rate: after 7 years (summer 2014) it contains
around 60 models. Industrial projects are very reluctant to share models
because they believe these reflect key intellectual property and or insight into
their state of IT-affairs.

Due to the so far limited success in identifying open source projects with
UML, many researchers (including the authors themselves at the start of this
study) are rather pessimistic finding much use of UML in open source projects.
Furthermore, since most open source platforms, such as GitHub, do not provide
facilities for model versioning, such as tools for model merging, we were even
more pessimistic about finding examples of UML models that were updated
over time.

The lack of available data is the reason why so far no answers could be
given to several basic questions on the amount of UML files in open source
projects that are static or updated, the time span during which models are
created or updated during the open source project, or the question which of
the project’s contributors do create models. Thus it seems that UML is not
frequently present in FOSS projects. However, there is no exact quantification
of its presence.

GitHub hosts around 10 million of non-forked repositories, which makes
it a good starting point to obtain an estimation of the use of UML in FOSS
projects. GitHub’s web search is limited for this type of endeavor as it targets
mainly source code searches by developers. However, there are many other
ways to access GitHub data (GHTorrent or the GitHub API), but as we will
show obtaining data on UML usage is not trivial.

In this paper we present our efforts to mine GitHub in order to gain a
list of open source projects that include UML models. Due to the required
manual steps, it is not yet feasible to investigate all 12 million GitHub projects.
Instead we focus on a random sample of 10% of all GitHub projects (1,24
million of the 12 million repositories). It turned out that for achieving this goal
we required to join forces and expertise from different fields. The first challenge
is the identification of non-forked repositories in GitHub with the help of the
GHTorrent [36] in order to retrieve candidates for files that might include UML
diagrams. Since these many of these diagrams are stored in formats that can

3.2. RESEARCH QUESTIONS 45

also include other information than models, e.g. images or XML based files,
it is further necessary to perform an automated recognition of those files that
actually are UML. Therefore, it is required to perform two different checks,
one for XML based formats and one for images, which is a state of the research
technology that just became available in 2014 [80]. Finally, with the retrieved
list of UML models, the git repositories of these projects were triggered in
order to retrieve information about the repositories and further information
about commit and update histories of these models. As a result we gain out of
over 1 240 000 repositories a first list of 3 295 projects containing UML models.

The contributions of this paper are: 1. A first list of 3 295 GitHub
repositories including altogether including 21 316 models. This list can be
used by other researchers in future to find case studies and experimental data,
e.g. for developing model versioning technologies or for studying how design
decisions in models transfer to the code. 2. Based on this data we give for
the first time answers descriptive questions about the number of models that
are subject to updates, the number of model duplicates that can be found,
and the point in a projects life time where models are created and updated.
3. Furthermore, this research provides the basis to ask when UML models are
introduced and updated. Surely the approach has still limitations, for example
we will not be able to identify how often the models are read. However, we
believe that these first descriptive results are just a starting point. They enable
us and other researchers to formulated and address more advanced questions
about UML usage and its impacts on a project in future work.

The remainder of our paper is structured as follows. In Section 3.2, we
formulate a number of research questions. Section 3.3 shows our review on
relevant works. We describe our study approach in detail in Section 3.4. Our
findings are presented and discussed in Section 3.5 and Section 3.6, respectively,
including the threats to validity. We conclude our paper in Section 3.8.

3.2 Research questions

The data set that we are assessing in this work would allow for a multitude
of analysis, e.g. for assessing the distribution of different model types more
precisely than it has been done in related work so far. However, answering
all questions at once is not possible due to space limitations, but also due to
limitation of time. Therefore, we decided to focus in this paper on a set of
descriptive questions that had not been addressed in related work so far and
that provide a necessary starting point and frame for future analysis:

RQ1: Are there GitHub projects that use UML? Which are these projects?

RQ2: Are there GitHub projects in which the UML models are also updated?

These first two questions are interesting for two reasons. First, their answer
represents a description of the state of practice that was simply not available so
far. Second, projects with updates are ideal candidates for future investigations
on model usage. For example, they might be used to evaluate facilities for
model versioning.

RQ3: When in the project are new UML models introduced?

Is it at the beginning of the project or later? What span of the project
life time is covered by the phase where UML models are actively created

46 CHAPTER 3. PAPER B

or modified? Again the descriptive character of this questions is important.
Only with the answer, we will be capable to formulate more precise questions
on the model usage in future work. For example, whether these figures are
homogeneous amongst open source projects or not, will imply directions for
future investigations. In long term/ future work this might lead to investigations
what form of model usage is most efficient and so on.

RQ4: What is the time span of “active” UML creation and modification?

With this question we want to know how long is the time span during which
models are in active use during a project? A limitation of our methodology is
that we cannot investigate how often and when models are read. However, we
can have a look at the time span of active UML creation and modification, i.e.,
the time between the first introduction of a UML file and the last introduction
or update of UML files within a project.

RQ5: Are UML files originals? Special model versioning techniques such
as model merging are not explicitly supported by GitHub. Therefore, we are
interested in the question how many of the found models are duplicates of
other models.

Despite the big interest in these questions, it was until now not possible to
answer them. The reason is that simply no systematic knowledge exists about
UML in open source projects. Furthermore, even if projects are known, it
requires advanced mining of the repository in order to get related information
about changes and contributors.

3.3 Related research

This paper builds on previous research done in two research communities: the
software modelling- and the mining software repositories communities.

3.3.1 Use of UML in FOSS

Studies on the usage of UML are frequently done amongst in industry (mostly
through surveys) [26,81]. However, only few studies focus on freely available
models, such as can be found in open source projects. Reggio et al. [81]
investigated which UML diagrams are used based on diverse available resources,
such as online books, university courses, tutorials, or modeling tools. While
this work was done mainly manually, Karasneh et al. use a crawling approach
to automatically fill an online repository' with so far more than 700 model
images [20] Both works focus on the models only and do not take their project
context into account. Further, they do not distinguish between models that
stem from actual software development projects and models that are created
for other reasons, e.g. teaching.

An index of existing model repositories can be found online [14]2. However,
in addition to their small size, these repositories seldom include other artifacts
than the models, making it impossible to study the models in the environment
of actual projects.

Thttp://models-db.com/
2Index of model repositories http://www2.compute.dtu.dk/~hsto/fmi/models.html

http://models-db.com/
http://www2.compute.dtu.dk/~hsto/fmi/models.html

3.4. METHODOLOGY 47

Further, there are some works addressing small numbers of case studies of
modeling in open source projects. Yatani et al. studied the models usage in
Ubuntu development by interviewing 9 developers. They found that models
are forward designs that are rarely updated [21]. Osman et al. investigated 10
case studies of open source projects from Google-code and SourceForge that
use UML. They focused on identifying the ratio of classes in the diagrams
compared to classes in the code. They find only seldom cases where models
are updated [22].

Finally, there are three works that actually approach a quantitative in-
vestigation of models in open source projects. Chung et al. questioned 230
contributors from 40 open source projects for their use of sketches [23] and
found that participants tend to not update these sketches. A study that
focuses on software architecture documentation in open source projects was
performed by Ding et al. They manually studied 2 000 projects from Source-
Forge, Google code, GitHub, and Tigris. Amongst those projects that used
such documentations they identified 19 projects that actually use UML [24].

The work that is probably closest to our study is the one of Langer et
al. They searched for files conforming to the enterprise architect file format
(which is a format that can be used to store UML files) within Google code,
assembla, and GitHub. They identified 121 models. They further assessed the
model lifespan (between introduction and last update) to be in average 1 247
days [34]. However, studying a single file format is a rather limited view on
UML. Furthermore, the project perspective is not considered and they rather
put a focus on the used UML concepts.

3.3.2 Mining

Mining software repositories has mainly focused on aspects related directly to
(programming) source code. However, projects may include non-source-code
sources such as images, translation, documentation or user interface files, that
can be usually identified by their extension [82]. By doing so, research has shed
some light on the variation and specialization of workload that exist in FOSS
communities [83].

The study of specific file formats that are non-source code can be found
as well in the research literature: Mclntosh et al. have investigated the build
system for its evolution [84] and effort [85], or the analysis of infrastructure as
code that has become mainstream in the last years [86].

3.4 Methodology

In this section, we describe our study approach. The overall process is shown
in Figure 3.1.

First, we obtained a list of 10% of the GitHub repositories from GHTor-
rent [36] that are not forks. This resulted in a list of files of 1 240 000 repositories,
those who had a downloadable branch. From this list, potential UML files were
collected using several heuristic filters based on the creation and storage nature
of UML files (Step 1). Section 3.4.1 and Section 3.4.2 describe our approach in
detail.

48 CHAPTER 3. PAPER B

GHTorrent GitHub

A 4

@ Data collection @ Analyse result
1 A

Potential UML file list

4

@ Filter UML files @ Query database
UML Image Textual t
Filter Filter UML CVSAnalY MySQL
I |
P File list
{ Validation J | 3) Extract Meta-data

Figure 3.1: Overall processes

An automated process was built to examine the existence of UML notation
in the obtained files (Step 2). A manual validation step is taken in order to
consolidate the classification result. In the end, we had 21 316 files that contain
UML diagrams. We describe the classification method in Section 3.4.3.

We have then obtained the meta-data from those repositories where a UML
file has been identified by means of using the CVSAnalY tool [87] (step 3).
Section 3.4.4 discusses tool’s settings and the meta-data structure.

In step 4, we queried the metadata (taken in Step 3) with respect to our
research questions. We answer the research questions by analyzing the result
(Step 5). Note that during the data analysis further files got lost for diverse
reasons (see discussion section 3.6). Thus, we were finally able to analyze a set
of 21 316 UML model files.

A replication package of our analysis is available online [88].

3.4.1 Occurrence of UML

To understand how we searched for files containing UML, it is important to
understand how these files are created and stored. Figure 3.2 illustrates the
different sources of UML files (at the bottom in green). UML models might be
created by manual drawing (sketching). Possibilities to create models directly
with a computer are the usage of tools that have drawing functionality, such as
Inkscape, or dedicated modeling tools, such as Modelio or Argo UML. Some of
the modeling tools even provide the possibility to generate UML models, e.g.
based on source code. This differences in tool support lead to a wide variety of
ways in which UML models are represented by files. The different possibilities
are illustrated in blue at the top of Figure 3.2: Firstly, manual sketches are
sometimes digitized with the help of scanners or digital cameras and thus lead
to image files of diverse formats. Secondly, tools with drawing capabilities can

3.4. METHODOLOGY 49

either store the UML models as images, such as .jpeg and .png or .bmp, or
may have file specific formats, e.g. ”pptx”. Thirdly, dedicated modeling tools
work with tool specific file formats, e.g. the Enterprise Architect tool stores
files with a “.eap” extension. Also some tools work with ’standard’ formats for
storing and exchanging UML: “.uml” and “.xmi”. Yet, modeling tools with
specific formats often allow to export and import these standard formats and
allow to export the models as images. As a consequence, when searching for
UML many different file types need to be considered.

UML Models
Standard formats for storing and Tool specific file
Image Formats, transferring UML models: formats, e.g.
e.g.: .jpg, .png ... e .uml .eap, .pptx, .argo,
* Xxmi ‘ .ecore ...
* ! 1
i «export» “«export/store as» ~Jestore as»
«store as» «export/store as» T - N~
Ny «store as» Y
Manual sketches, Tools with drawing Modeling tools, e.g.:
e.g. scans functionality, e.g. PowerPoint * Eclipse UML2 Tools,
* Enterprise Architect,
* Modelio,
* ArgoUML,

* Microsoft Visio,

Figure 3.2: There is a large variety of tools for creating and formats for storing
UML models

3.4.2 Data Collection

For all repositories from GHTorrent [36] that are not marked as forks, we
used the GitHub API: i) To obtain file list for master branch; ii) If no master
branch found, ask for default branch; iii) To obtain the file list from default
branch. With up to three GitHub calls (i, ii and iii) for each repository, given
the GitHub API limitation of 5 000 requests/hour, it took over two weeks to
retrieve the complete file list once the machinery was set up.

As explained in section 3.4.1, different file formats need to be taken into
account. However, as not every image file is UML, also not every xmi file or
files with the endings of tool specific format extensions are UML. Therefore,
the filtering process does not only consist of the collection of files with a specific
extension, but also of a check whether the collected files are really UML files. It
makes no sense to collect files in the first step, for which we have no automated
support for the second step.

Since image files as well as standard formats are more common and are
created by most modeling tools. For each the development of approaches to
identify UML has a good cost-benefit ratio. The applied methods are explained
below in section 3.4.3. However, for tool specific formats this ratio can be very
low. Therefore, we searched only files of those formats where we could exclude
two cases:

e The format is used within the tool exclusively for UML models.

50 CHAPTER 3. PAPER B

e The file extension of the format is not used by other tools. For example
the extension of Enterprise architect files (“.eap”) is also used for Adobe
Photoshop exposure files.

To identify these formats we used as a starting point the list of UML modeling
tools collected on WikiPedia®, which we as experts consider as one of the most
complete lists available. We checked whether the file formats used by these
tools do not fulfill the two obstacles mentioned above.

Thus, we search for following file types:

M ”

e Images: Common filenames for UML files (such as "xmi”, "uml”, ”dia-

b2 b

gram”, ”architecture”, ”design”) that have following extensions ("xml”,

k2 M3) M3) b2) 7

"bmp”, "jpg”, "jpeg”, "gif”, "png”, "svg”)
e Standard formats: ["uml”, "xmi”]

e UML file extensions that solely relate to specific UML Editor tools:

M b2

["aird”, ”argo”, "asta”, ”dfClass”, ”dfUseCase”, "ecore”, "mdj”, ”simp”,

"txvels”, Pumlx”, Pump”, "uxf”, ?zargo”, "zuml”, "zvpl”, ”plantuml”|
Hence we do not consider document formats such as word (.doc(x)), .pdf and
powerpoint (.ppt(x)). The main reason is that currently technology is not yet
capable of extracting UML models out of such general documents.

3.4.3 UML filters

At this stage, the files obtained from Step 1 were checked if they really contain
UML notation. More specifically, the files which solely belong to specific UML
editor tools were automatically added to the final UML file list.

3.4.3.1 Identify UML images

Firstly, all images were automatically downloaded. Files that could not down-
loaded or unreadable were eliminated (Result: Successfully downloaded files
downloads: 55 747; errors: 1 819). In addition, observations on downloaded
images showed a remarkable number of icons and duplicate images. While it’s
mostly impossible to find reasonable UML content in icon-size images, includ-
ing duplicate images in candidate set could definitively cause redundancies
to classification phase. Therefore, we eliminated icon-size images. Duplicate
images were proceeded as: i) Duplicate images were automatically detected;
ii) Representative images were added to classification candidate list; iii) After
classification phase, duplicate images of an image will be marked as the same
label as the image.

In particular, 15 726 images that have icon-dimension-size no bigger than
128 x 128 were excluded. Subfigures 3.3a, 3.3b and 3.3c show examples of such
images.

In order to detect duplicate images, we created a simple detection tool
by using an open source .NET library ”Similar images finder” *. Given two

3List of modeling tools https://en.wikipedia.org/wiki/List_of_Unified_Modeling_
Language_tools, Last visited 9th December 2015
‘nttps://similarimagesfinder.codeplex.com/

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://similarimagesfinder.codeplex.com/

3.4. METHODOLOGY 51

(b) Dup 1b (c) icon

Figure 3.3: Example of duplicates and icon-size images

images, the tool calculates differences between their RGB projections to say
how similar they are. In our case, we chose a similarity threshold at 95% since
it gave the best detection rate through a number of tests on a subset of our
images. Downloading of images took 27 hours.

The final image set of 19 506 images were classified as UML or non-UML
images by using a classifier from our prior research [80]. The classifier was
trained by a set of 1 300 images (650 UML-CD images and 650 non-UML-CD
images). The Random Forest algorithm was chosen since it performed the best
in term of minimizing the amount of false-positive rate (expecting below 4%).
The automated classification too 26.5 hours. In order to eliminate false-positive
and false-negative cases, we manually checked the whole image set. It took
6 working days of effort of an UML expert to complete the checking. This
manual check allowed us to prove our classification method and to consolidate
classification results. It turned out that the automated analysis had a 98.6%
precision and 86.6% recall. The false positives and negatives could be identified
due the the manual check.

Gradually, we manually picked up UML in other types (i.e., Sequence
Diagram - SD, Component Diagram - CPD, Deployment Diagram - DLD,
State Machines - SM and Use-case - UC). UML files that are sketches (SKE)
were counted, too. The list of images was marked with a number of labels:
"UNREAD”, ”SVG”, ”"SMALL”, ’DUP”, ”CD”, ”SD”, ”CPD”, ”"DLD”, ”SM”,
"UC” and "SKE”.

3.4.3.2 Identify UML files among .xmi and .uml files

Both .xmi and .uml files are specific XML formats. The later ones can include
uml models, only and we found 10 171 of them. XMI is a standard format that
should enable exchange of models between different tools. In theory it should
be simple to identify whether an XML file in general contains a UML model:
the schema reference in the XML file defines the content’s format.

We performed the analysis in 3 steps:

[a] In practice the schema reference are often generated in different forms
by tools. For example, we found following three schema references to
the UML: “org.omg/UML”, “omg.org/spec/UML”, and “http://schema.
omg.org/spec/UML”. Therefore we first of all searched with a simple
search function for the string “UML” and “MOF” (the meta meta model

org.omg/UML
omg.org/spec/UML
http://schema.omg.org/spec/UML
http://schema.omg.org/spec/UML

52 CHAPTER 3. PAPER B

of the UML language) in a random subset of the models. This way we
could come up with a list of 7 strings representing UML schema references.

[b] In a second step we automatically downloaded the identified xmi files and
parsed them for the schema references. We could identify 876 files with
UML schema references. However, 359 files could not be downloaded
automatically (for diverse reasons). Here we applied a manual check for
the schema references.

[c] In a last step we wanted to double check that the existence of such
a schema reference is sufficient to assume that the file includes UML.
Therefore, we took a sample of four open source projects containing
together 53 (between 1 and 33 respectively) links to xmi files. In addition
to the check for schema references, we went manual through the content
of the 53 files to assess whether and what kind of models they include. A
comparison of the results with the data from the step above confirmed
that the existence of an UML/MOF schema is a reliable indicator for
rating a file as UML: of the 53 xmi files, 30 had been rated by both
approaches as UML, while the other 23 were rated as non-UML.

Finally we run a duplicate detection on .xmi and .uml files by calculating
and comparing hash values of the file contents.

3.4.4 Metadata Extraction and Querying

We downloaded all repositories where at least one (real) UML file was identified
and extracted its metadata with the help of CVSAnalY [87]. 100 repositories
from the initial list could not be retrieved, due to various reasons, from some
giving errors to others having changed to private repositories.

In average, around 30.000 projects per day were downloaded for each Github
account. Taking these results a time span of 14 months ((12.847.555 projects /
30000) / 30) would be required for the analysis, when using one single Github
account. As this would have made this study in feasible, we parallelized the
retrieval of the JSON files through many Github accounts, which were donated
during this process. This reduced the time span to approximately one month.
While the download is an automated process, but the parallelization is not. It
took around 1 h 30’ each day to run and check each set of repositories, using
up to 21 Github accounts. Altogether this process took 6 weeks.

After this process, we had 21 316 of the identified UML files from 3 295
repositories and the corresponding meta-data in a SQL database. A new SQL
table was added to the ones provided by CVSAnalY with just the UML files
for easy and efficient querying. A set of Python scripts where then used to
answer the RQs stated in this paper by querying the database and aggregating
the data accordingly. This final step took 14 days.

3.5 Results

This section presents the results of our investigation. Together with this
research an ample amount of data have been used, usually handled by scripts

3.5. RESULTS 53

developed by the authors. Detailed information of the former and the code of
the latter can be obtained in the replication package®.

3.5.1 RQ1l: UML in GitHub projects

We downloaded 1 240 000 non-forked GitHub repositories obtained from GHTor-
rent. After filtering the data for potential UML files based on type, we retrieved
a list of 100 702 links. Of those, 21 316 were classified as UML.

The further extraction of model related data, turned out to be an additional
filter, since details could not be extracted for all files. The reason for this is
due to the fact that our retrieval procedure takes so much time that context
changes. So, for instance, in the time that goes from the retrieval of information
of the files the are included in a project (July/August 2015) to the time where
the git repositories where downloaded (November/December 2015), some of
them were renamed, deleted or made private.

In consequence, 21 316 files could be retrieved for the following analysis (as
summarized in Table 3.1). These files belong to 3 295 GitHub projects. Of
these 1 947 include a single UML file, only and 1 169 projects include between
2 and 9 UML files. Furthermore, we identified 158 projects with 10 to 99 UML
files and 4 projects with more than 100 UML files. In the following analysis,
the later 21 projects are taken separately, when statistics per model are shown.
The reason is that they show very different characteristics and would, with
their large number of models®, strongly bias and hide trends that occur within
the other projects. This first list of identified GitHub projects that include
UML can be found online [88].

Table 3.1: Found distribution of model files by formats

gif
16.6%

bmp
0.2%

uml

44.9%

xmi

3.4%

jpeg
4.7%

png
29.6%

svg
0.6%

Share

Results for RQ1: The here identified repositories with UML files
represent already 0.28% of the GitHub repositories. Of these, two
thirds of the projects contain a single UML file.

3.5.2 RQ2: Versions of UML models

The next important question was whether models are ’read-only’ or also
sometimes updated.

Table 3.2 summarizes the distribution of model files by number of updates
per model. Our results show that the vast majority of the UML files (18 867)
are never updated. Nonetheless, we found that more than 11% of the UML
files in our sample (2 449 models) were updated one or more times. Further,
the number of updates of models that are updated is on average 3,0 times
(although the median, which is more significant given the skewed distribution,

5Replication package http://oss.models-db.com
60ne of the projects is “eclipse/emf.compare/”, which includes more than 6 000 models.
We strongly assume that many of these models are generated, e.g. for tests.

http://oss.models-db.com

54 CHAPTER 3. PAPER B

is 1 time). Furthermore, Table 3.2 summarize the distribution of projects by
sum of model updates or all models of a project.

26.67% of the projects in our sample include at least one model update.
Models are less often updated in projects that have more than 100 models
(38.09% in our sample), in contrast to 26.60% of the models in projects with
less than 100 models are updated. There are only 11 projects that include
more than 100 model updates.

Table 3.2: Distribution of files / projects by number of updates

number || models in | models in || projects
of up- || projects projects
dates with 1 to 99 | with > 100
models models
0 7947 10 921 2416
1 946 466 332
2 336 42 157
3 151 19 78
4 107 7 64
5 82 2 51
6 67 4 34
7 38 1 18
8 24 3 17
9 24 1 12
10 11 2 8
<20 70 3 20
<30 24 0 25
<40 14 0 8
<50 1 0 6
<60 2 0 2
<70 0 0 0
<80 0 0 2
<90 1 0 3
<100 1 0 1
>100 0 0 11

Results for Q2: Only 26% of the investigated projects updated
their UML files at least once.

3.5.3 RQ3: Time of UML model introduction

Figure 3.4 shows the dates of the introduction models considering the amount
of days since the start of the project, while Figure 3.5 displays the same
information by dividing the duration of the project from the start to nowadays
in a normalized way (so, the 50% mark would be half of the project duration
since its start until today).

Projects with less than 100 UML models seem to have a tendency to
introduce models at the project start. In contrast, the 21 projects with 100
or more models show a different graph. We decided to show the numbers

3.5. RESULTS 55

3500 3259
3000
2500 5586
0
2 2000
=
]
3
£ 1500
1000 965 883
500 390 291 323 103 402
131 149 97 135 99
4 53 81
0 I II I m 0 0 = [A
S T I N N S e
N S I I IS T T ITIT TS S S P
NP PP LFEFLSFHFFTFIS IS
A M N N 9 \'?Q Q‘;) Q’Q \,\‘/') \,,?0 Q‘o

Project age in days at a models initial commit

Figure 3.4: Distribution of model files sorted by project’s age in days when
the diagram was introduced (models within projects that have less than 100

models)

separately, since these projects with partially more than 1 000 models would
easily bias the presented view.

8000

7129
7000
6000
5000
"
[
2
T 4000
°
i<}
=
3000
2000
1000 819
. 8 = 162 399 111 152
8 83
A o N BN o & BN o N o
<$é§3 <§é§> <§é§) <$‘&3 <§3§> <§6é) <$é§3 <§éé> <§ééb ek?$$
S < <& @ & g © <Q N &

Percentage of days (relative to time between the respectives project's start and today) alreday passed,
when the model files was initially committed

Figure 3.5: Distribution of model files sorted by percentage of project time
that passed when the UML file was introduced (for projects that have less than
100 models)

However, we found that calender time (days) may not be the best way to
consider a project’s progress, since the amount of activities can highly vary
during the lifetime of open source projects. Figure 3.6 shows the distribution
of the models based on the time of their introduction when measured by the

56 CHAPTER 3. PAPER B

percentage of the project’s commits.
3000
2452

2500

2000

3
T 1500
3
s 1134
1000 884
786 823 742 788 782 837
618
) I I
0
\90\0\ ’&o\e\ %6\0\ §\o\ <,§\°\ Q’6,\0\ /\Qo\o\ q’s\e\ qgo\b\ \900\0\
¥ S S S S N N S N g
N <& <& @ N\ g © <Q N &

Amount of overall number of commits already done within the respective project, when the model file
was committed

Figure 3.6: Distribution of files sorted by number of overall commits done when
the diagram was introduced (For models in projects that have less than 100
models)

An interesting difference between the two views is that the consideration
of time in terms of amount of commits shows a much more balanced view.
While this may not be the most intuitive notion, it helps to place the modeling
activities relative to the active phases of the project. Thus we can see whether
model introduction happened before or after a majority of other development
activities (such as coding or documenting). In addition, it helps to better
represent projects that had their main activity in the past and/or have become
inactive. From our results, it can be seen that new models are introduced
predominantly in the early phases (above 25% of them in the first 10% of the
commits), but that new UML models are introduced in later phases too.

Finally, as mentioned above the results look very different for the 21 projects
that have 100 or more models. As Figure 3.7 illustrates there most models are
introduce during the last third of the project activities.

Results for Q3: UML models are introduced in all active phases
of a project with a tendency towards the early phases.

3.5.4 RQ4: Time span of active UML

In this RQ, we have looked at the time span of active UML creation and
modification, i.e., the time between the first introduction of a UML file and
the last introduction or update of a UML file within a project.

Figure 3.8 summarizes these time spans. The maximum time span found
is thereby 100% of the projects commits, while the median of the time spans
is 5.8%. We found that by far most projects seem to introduce (and update)
all models within a single day. Model creation and updating plays only in a
minority of the projects a role during more than 10% of the project’s commits.

3.5. RESULTS 57

4000
3523
3500
3000
2500 2429
»
2
E 2000
<} 1618
=
1500
1127
1000 870 795 794
107
27
0 =L | -
o o o o o o o o o o
@\‘\9 °°\°"LQ g\‘?)Q @\‘@ g\f’o g\‘fbQ @\é\e @\5%0 Q"\"90 e\o"\’QQ
S < 4 <@ & g © <Q N &

Amount of overall number of commits already done within the respective project, when the model file
was committed

Figure 3.7: Distribution of files sorted by number of overall commits done when
the diagram was introduced (For models of the 21 projects that have 100 or
more models)

2000 1898
1800
1600
1400
1200

1000

Projects

800
600

400 348

242 196 195
Bz H i 2 2 m
0 | - [|
o N o o o o o o
; ; < S A £ Y
o o o o S S S S
€ © Q @

Time between first and last model commit or modification in amount of project's commits

$
N

o

QQ

Figure 3.8: Projects by time between first model commit and last model
update-or-commit as percentage of project’s commits

58 CHAPTER 3. PAPER B

As with RQ3, we use commits as an alternative measure of the time where
UML introductions/updates occur. Figure 3.9 presents the active UML phase
for all 3 295 projects from this perspective. The active UML phase of a project
is given horizontally in percentages of commits done, starting when the first
model is introduced and ending when the last model is introduced or updated.
The diagram illustrates nicely the findings from above that a minority of
projects (less than 10%) have UML active phases that cover nearly the whole
project life time. For a majority of projects the active UML phase is very short,
many of them concentrating this activity in the first commits.

and modification)

of active UML creation

Projects (sorted by length of phase

90% 100%

2
8
g

juring modeling.

Figure 3.9: Plot of all 3 295 projects illustrating the placement of active UML
creation and manipulation phase within the overall project life span. Time is
measured in percentages of commits done, when the first model is introduced
and the last model is introduced or updated. The projects are sorted by the
relative amount of the active modeling phase (projects with a relatively long
active modeling phase are at the top, projects with a shorter phase are at the
bottom).

Results for Q4: Few of the studied projects are active with UML
during their whole lifetime. In general, the projects work very
shortly on UML, usually at the beginning.

3.5.5 RQ5: Duplicates

Our final question was whether the 21 316 found model files are all distinct
originals. To answer the question we used automated duplicate detection, as
indicated in the method section.

As a result we identified that 16 576 of the 21 316 found models where
unique in our sample. The remaining 4 741 model files represent 2300 models
of which each occurs at least twice. Thus, 21 316 found model files include
together 18 876 distinct models. In Figure 3.10 we summarize how often models
with duplicates occurred in our sample. Interestingly, one of the models was
found 79 times. In average, models that are duplicated are duplicated 3,63
times.

Furthermore, we investigated, whether duplicates of a model belong to
the same project. To our surprise this is only for the half of the models

3.6. DISCUSSION 59

14001587

1200

1000

800

600 590

Number of models

400

200 123
5262182918275820830320
- n

- — — —
A A %Q\Q@\Q%Q\Q@\ ,\0\0%0\00)0\
FFFEEEES

Number of found occurences of a model

Figure 3.10: Histogram of models that were found at least twice indicating
how often models occur.

with duplicates the case. However, the roughly the half of these models have
occurrences in multiple repositories (up to 43). In average the number of
projects over which duplicates of a model are spread is 1,88. Figure 3.11
summarizes the results in form of a histogram.

While duplicates that occur in the same repository might be result of
attempts to model versions, we cannot explain the high number of cases were
models occur in multiple projects. A possible explanation might be that models
might be stored as part of platforms or plug-ins that are reused in multiple
projects. Another explanation could be project forks that are done manually
by cloning repositories instead of using GitHubs fork mechanism.

Results for Q5: While most models seem to be unique, a large
number of identified distinct models (12%) occur several times.
In average duplicates are spread over 1,88 projects.

3.6 Discussion

Considering our initial expectations we were surprised to find such a big number
of projects with UML. Surely, 3 295 projects are still a small number compared
to the overall number of GitHub projects. Nonetheless, the identification of
21 316 UML models exceeds by far the expectations that we had based on the
numbers of models found so far in open source projects in related work, e.g.
121 models by Langer et al. [34] or 19 projects with UML by Ding et al. [24].

Data consistency We want to shortly discuss the type of data that we can
get with the presented mining method. The method we applied is not trivial
and consist of several steps of data collection. For example, we search for UML
candidates using a GHTorrent dump, but accessed the GitHub API to retrieve

60 CHAPTER 3. PAPER B

1400
1200 1149
1000
800

600 548 533

400

200
. 22 18 9 10 2 0 0 7 0 1 1 o0
N % 9 6 A B 9O Q9§\ Q;§> c;g> Q;§\ Q§§\
NN

Number of projects that include dublicates of the same model

Number of models

Figure 3.11: Histogram of models that have duplicates in one or more projects.
The histogram shows the number of models by number of projects within which
occurrences of a model were identified.

further information about model contributors. Due to the difference in time
between the creation of the GHTorrent dump and the request to the GitHub
API, we had drop outs of identified models/projects during the second step.

In addition, we performed this method for the first time, which had an
exploratory component in trying out what kind of data we can (and need to)
retrieve. This led to the situation that we accessed the GitHub API several
times, leading to different drop-outs in models and projects for the different
types of information collected.

A lessons learned is that, for the next analysis, we have to make a clear
planning of all required data in advance, to ensure that at least the second
threat to data consistency can be reduced. For this paper we addressed the
problem with a reduction of the finally analyzed data set to models and projects
for which we had the data points that are necessary to answer the different
research questions.

Static models A finding is that many projects use UML only in a very
static way. In such projects models are never updated and often all models
are introduced at the same point in time. These results confirm findings from
smaller studies such as Yatani et al.’s [21] or our own (Osman et al.’s [22]), who
both found that updates of models are rare. This can have different reasons.
One optimistic interpretation would be that models are just introduced as first
architectural plans that are followed and used as documentations, but never
changed. Another rather pessimistic interpretation would be that modeling is
just “tried-out” at some point in time and then dropped. An observation that
at least supports the idea that the optimistic interpretation plays a role is that
in most projects the main activities of introducing models happen during the
first half of all commit activities.

3.6. DISCUSSION 61

Projects with regular model usage Another number that we consider
surprisingly high is the number of projects (or models) with more than 20
updates as well as projects with more than 1 year of active UML creation
and modeling. Again, compared to the number of overall GitHub projects the
here found number seem small. Nonetheless, it was unexpected to find several
projects that seem to use modeling on a regular basis.

It has to be noted that the results we found are in contrast to the study of
Langer et al. [34] who found an average model lifespan of 1 247 days, while
studying 121 enterprise architecture models in open source. We found much
lower lifespans. The difference in the findings might be caused by the fact
that enterprise architect is a modeling tool that is rather used in an industrial
context. Thus, the probability that the projects studied by Langer et al. [34]
have industrial support is very high.

Model genesis An aspect that we could not address in this study the source
of the models or the reason for model usage. Accordingly, the data set was not
filtered to exclude for example student projects. We expect this to influence the
the findings in this paper, since student projects might show different patterns
of model updates, model introduction time, and life span than non-student
projects. Addressing this threat will be subject to future work.

Different populations A finding that is supported by multiple of the figures
shown above is that there seem to be different populations of model usage. A
first hint that the data set covers different populations can be seen in Table 3.2.
There is a difference in the number of model updates between projects with more
than 100 model files and projects with less than 100 model files. One reason
for different populations could be the actual form of model usage and creation.
Models might be created manually or automatically (e.g. through reverse
engineering). They might solve as plans for system design or as description
for an already existing system. Model updates might be performed in order to
make small corrections after an initial creation (leading to updates within in
short span of time) or in order to make a documentation up to date after a
longer phase of system change. At the current state we do not know whether
these populations can actually be distinguished on their characteristic commit
and update pattern. However, a further hint that they might play a role can be
seen in the relatively constant distribution models by the amount of commits
that were already done within a project (see Figure 3.6). We can see model
introductions at all project ages. The in average short time of active UML
creation and modification speaks against the idea that these introductions at
different points in time happen within the same projects. Thus, it seems that
we have to deal with different groups of projects introducing their models at
different points in time. In future work we plan to have a closer look at the
model usage in order to study whether we can associate pattern to different
populations of model use.

Duplicates The large number of identified duplicates leads to questions.
What are the reasons for duplicates? Missing model versioning techniques
alone cannot explain the found results. Furthermore, it is not clear yet whether
these duplicates represent a form of model use. E.g. if models are adopted

62 CHAPTER 3. PAPER B

together with code from other projects, they might be used to understand the
alien code that is embedded in a new project.

Paving the way for future research Finally, one of our main contributions
is that we presented a method to systematically mine for UML models in GitHub
and that this leads to an enormously promising set (much larger than any
existing set of projects) for future analysis. On the one hand this will help us
to address in future question that arise from the findings of this paper. For
example, concerning the model updates, it would be interesting to consider
following questions:

e Are models updated by their original authors or by other people?

e In how many projects are UML files obsolete?

Further considering the time of model introduction, we would like to address
the following question further: Has the time of introduction an influence on
the ”success” of an open source project, i.e. the question how many developers
join a project? And of course we would like to address the question whether
different populations of model-usages can be statistically distinguished.

Even more important, the hereby published list of open source projects
using UML can help other researchers to progress in their studies. For example:

What kind of UML diagrams are used most often?

What coding languages are used most often in combination with UML?

What files are changed together with changes in architectural models?

Can UML help to attract and integrate inexperienced developers?

Furthermore, the data can be used to find case studies for other model or
architecture related research, such as:

e Does a good architectural design in models help to create a good archi-
tecture in the code?

e Tools for traceability management and model merging can benefit from
the real case studies.

e Research that integrates models into fault prediction can be evaluated
with the help of that data.

Thus, we believe that the identified initial list of open source projects with
UML will be of great help for other researchers, too.

3.7 Threats to validity

We defined a number of threats to our research’s validity. We categorized them
by using the validity terminology introduced by Wohlin et.al [89]. We identified
three types of threats to validity, they are: Construction Validity, External
validity and Conclusion Validity.

3.7. THREATS TO VALIDITY 63

3.7.1 Threats to construct validity

There were a number of threats that might cause the loss of UML files during
data collection phase:

e With regards to the materials that were used to collect data, we used a
subset of GHTorrent SQL dump from 2015-06-18 which is out-dated at
the current time. Accordingly, newer projects have a higher probability
to be dropped out. In addition, the limitation of 5 000 hits per hour of
GitHub API made data collection last long. Requests that were done at
different points of time during the period could give different outcomes,
and probably the loss of potential UML files.

e Our collection method, which made use of a number of heuristic filters,
might overlook potential UML files which are not complying with search-
ing terms and file-type list. We noticed some cases where UML files had
been named differently such as act-cartesortir.jpg and FrameworkInter-
face.png. Further, we restricted the search to file formats for which we
had techniques to decided, whether the file includes UML. This excludes
a couple of other formats which might include models, such as some
formats from modeling or graphic tools (e.g. visio files or enterprise
architect files), but also documents that might include models as part of
documentations, e.g. pdf and word (docx) files or powerpoint.

The loss of UML files might affect to our analysis in the sense that it
could make us underestimate the number of projects with UML models and
the number of UML models. Being aware of the above consequences, in this
research, we don’t use our data to analyze the frequencies of model usage as well
as the evolution of model usage in general over *the years*. We were focused
on getting an overview of various aspects of the use of UML in GitHub projects.
We expect no systematic bias concerning the aspects that we investigated!

The applied mechanisms for duplicate detection allow us to identify dupli-
cates within the same file type. However, we cannot identify whether an image
and an .xmi file are duplicates. This might lead to an underestimation of the
amount of models in this paper. Despite this limitation, our results are already
interesting and we consider them a valuable staring point, towards a better
understanding of model usage in FOSS.

Kalliamvakou et.al discuss a number of promises and potential risks that
researcher might be faced when mining GitHub repository [90]. We found
that the threat that many active projects might not conduct all their software
development in GitHub could somehow mitigate our analysis.

3.7.2 Threats to external validity

During data collection phase, in order to minimize the possibility of incorrectly
collect non-UML files, we excluded some tool-specific file types form the search
for UML models. This might reduce the generalization of our results with
respect to these UML tools. However, most of these tools, e.g. Enterprise
Architect, are commercial. It is to be investigated in future work whether they
are used in open source projects to a similar degree as non-commercial formats.

64 CHAPTER 3. PAPER B

Data in this research was only taken from GitHub, but not other OSS
hosts/platforms such as SourceForge, Google Code, etc. As they differ to each
other in terms of size, functionality, users and user’s behaviors, the results of
this paper can hardly be generalized to the other platforms. It is possible that
UML is used in a different ration within projects at other platforms. However,
as GitHub is one of the biggest player in the field, we strongly believe that our
investigation gives valuable insights to a majority of the OSS community.

A manual glance at the retrieved list of UML models shows that several
project paths include names such as “Assignment” or “master’s thesis”. While
this is no direct threat to our results, it limits the generalizability. For example,
it is possible that many of the projects that include single UML files only,
actually are result of university teaching.

Last but not least, outcomes of this research can not be generalized to
closed source community.

3.7.3 Threats to conclusion validity

As described above, the data has some limitations which permit to do analysis
of frequencies, since we expect to have only discovered a part of the overall set
of UML models and respective projects. In particular we have not considered
powerpoint, pdf, and word-formats of documentation in which UML models
may be embedded. For that reason we do not do statistical analysis or even
predictions, but stay on a descriptive level in this paper. Nonetheless, we
are convinced that this descriptive analysis already represents a valuable
contribution to the research community.

3.8 Conclusions

In this paper we joined forces in repository mining and model identification in
order to identify open source projects on GitHub that contain UML models.

As a result we can present a list of 3 295 open source projects which include
together 21 316 UML models. This is the first time the modeling community
can establish a corpus comparable to collections already exist for source code
only, such as QualitasCorpus ’. Furthermore, the relatively low amount of
UML projects amongst the investigated GitHub projects (0.28%) reconfirmed
that our systematic mining approach was required in order to establish the
corpus.

We analyzed the data to gain first descriptive results on UML model usage
in open source. One finding is that the majority of models is never updates,
but that projects exist that do update their models regularly. Furthermore,
we learned that models can be introduced during all possible phases in the
lifespan of an open source project. Nonetheless a peak of model introduction is
during the first 10% of the duration of projects.

A few projects are active with UML during their whole lifetime. However,
most projects work very shortly actively on UML, usually at the beginning.
We found that 12% of the distinct models occurred several times. Duplicates
are in average spread across 1.88 projects.

"QualitasCorpus http://qualitascorpus.com/

http://qualitascorpus.com/

3.8. CONCLUSIONS 65

In the future we plan to further explore the possibilities that arise with
the here presented new method to collect data about UML usage in open
source projects. For example we plan to analyze the impact of model usage
on project dynamics, such as the number of people joining projects. We are
planning to proceed with mining GitHub in future work. Based on the now
investigated 10% of GitHub we expect that GitHub includes around 34 000
projects with UML and together around 200 000 UML models. Furthermore,
we will investigate possibilities to identify UML models that are embedded in
other files such as manuals stored in pdf.

66

CHAPTER 3.

PAPER B

Chapter 4

Paper C

Practices and Perceptions of UML Use in Open Source
Projects

T. Ho-Quang, R. Hebig, G. Robles, M.R.V. Chaudron, F. Miguel An-
gel
Accepted at 39th International Conference on Software Engineer-

ing - Software Engineering in Practice Track (ICSE SEIP 2017),
Buenos Aires, Argentina, May 20 - May 28, 2017.

67

Abstract

Context: Open Source is getting more and more collaborative with industry.
At the same time, modeling is today playing a crucial role in development of,
e.g., safety critical software.

Goal: However, there is a lack of research about the use of modeling in Open
Source. Our goal is to shed some light into the motivation and benefits of the
use of modeling and its use within project teams.

Method: In this study, we perform a survey among Open Source developers.
We focus on projects that use the Unified Modeling Language (UML) as a
representative for software modeling.

Results: We received 485 answers of contributors of 458 different Open
Source projects.

Conclusion: Collaboration seems to be the most important motivation for
using UML. It benefits new contributors and contributors who do not cre-
ate models. Teams use UML during communication and planning of joint
implementation efforts.

Keywords: UML; architecture documentation; OSS projects; GitHub; moti-
vation; communication; effectiveness of UML

68 CHAPTER 4. PAPER C

4.1 Introduction

Open Source Software (OSS), which has its roots in the free software movement,
started partially as a counter-movement to the software industry in the 80s
and 90s [91]. Even though, there was a clear border between OSS and industry,
the situation started to change in the late 90s and early 2000s. In those
years, some industry started to early adopt the OSS movement practices,
collaborating with communities [92], or some companies were created around
some communities [93]. Many projects created foundations to serve as an
umbrella to collaborate and integrate software industry partners [94].

Thus, we have witnessed a process and technology transfer between OSS
and industry that has made the line between both be vague nowadays. Notable
contributions from OSS to industry have been technologies, such as git and
GitHub, and community-managing practices, although the list of adoptions
is much larger [95]. On the other hand, OSS has embraced practices from
industry, such as (modern) code review practices and planning and requirements
analysis mechanisms [96]. Companies with a large pool of developers try to
have an “internal” OSS-like ecosystem, a concept coined as inner source [97].
Many OSS practices are commonly taught at universities, and young graduates
start their professional careers with experience in OSS, whether in languages
(Python, Perl, Ruby...), products (JQuery, Hadoop...) and tools (GCC compiler
tool chain, git and GitHub...) [98]. And the software industry is looking into
popular OSS repositories, such as GitHub, to find suitable candidates to fill
open development positions [99].

In this regard, we have seen a clash of two worlds, resulting in new practices
where industry sometimes has adopted elements from OSS and vice versa.
As the trend seems to go on, we would like to draw attention on modeling,
specifically on the use of Unified Modeling Language (UML) in OSS. UML has
been around as a graphical language for modeling software systems for about
25 years. As far as it is known, UML is not yet frequently used in OSS projects,
with a rather marginal use [100]. OSS is known to be programming-driven,
with other tasks having room for further improvement [82]. However, modeling
is used in major companies [26]. Modeling is, thus, an area where we can find a
gap between OSS and industry. Given that the use of UML in OSS is not very
well-known, we would like to shed some light into this issue with the aim of
discovering how UML is used and whether it is considered useful. We hope that
the results will help to understand whether the use of UML in OSS helps these
projects and whether industry working with OSS projects should promote its
use.

To this end, we used a technique that we developed to find UML use in
GitHub projects [100]. This effort showed the feasibility of our approach and
triggered us to come up with various research questions addressed in this paper,
where we scanned through the majority of non-forked GitHub projects (over
12 million of projects) and identified which of them use UML.

We performed a large scale survey directed at those projects that use
UML, with focus on how it is used and impacts development activities. The
contributions of this research are: i) the identification of a large set of OSS
projects that use UML, and ii) insights from a large scale survey of OSS
developers that use UML. Amongst other insights, we have found that UML is

4.2. RESEARCH QUESTION 69

used to coordinate the development. Furthermore the use of UML seems to
help new contributors to get started, although it does not seem to attract new
contributors. The set of projects we identify are a valuable resource for future
empirical studies regarding UML.

The rest of this paper is constructed as follow: We formulate a number of
research questions in Section 4.2, then introduce related work in Section 4.3 and
describe our research method in Section 4.4. Section 4.5 presents our findings.
Our findings, possible threats to validity and implications of our research are
discussed in Section 4.6. Conclusions can be found in Section 4.7.

4.2 Research Question

To better understand the use of UML in OSS, we formulate the following three
main research questions:

RQ;: Why is UML used in OSS projects?

To get an impression of the role of UML models in OSS projects, we
formulate this first question as the following.

e SQ; ;: What are the motivations to use UML modeling?
e 5(Q);.2: What are the reasons not to use UML in projects?

RQg2: Is UML part of the interaction of (a team of) contributors?

Teams and interaction between developers play an important role within
todays software intensive industry [31]. Models are used as basis for planning
and work coordination. However, it is an open question, whether UML models
fulfill a similar role in OSS projects. We approach this question from three
aspects: 1) awareness of developers about the existence of UML models within
the project, 2) the use of UML during project planning and communication,
and 3) the role of UML during joined implementation efforts. These three
sub-research questions are structured as follows:

e SQs. ;: Are developers aware of the existence of UML in their projects?

e 5Q2.2: Are UML models used during communication and team decision
making?

e S5(Q)2. 3: Are modeled designs adopted afterward during the implementation
phase by teams of OSS contributors?

RQs: What is impact/benefit of UML? Much research has been performed
to identify benefits of UML usage in industry. However, it is not yet clear
whether UML usage impacts or even benefits development in OSS. Again, we
consider three different perspectives: 1) the role of UML for novice contributors,
2) the impact of UML on the working routine, and 3) the impact of UML
on the attractiveness of a project for potential contributors. The following
sub-research questions are structured:

e 5(Q)s ;: Can UML models support new contributors?
e S5@Q3.2: What are the impacts of using UML in OSS projects?

e 5@Q3.3: Can UML models help to attract new contributors?

70 CHAPTER 4. PAPER C

4.3 Related work

In the following we discuss related studies about UML or modeling in industry
and OSS.

4.3.1 Modeling in Industry

Modeling has been widely studied in industry, in particular in several surveys.
Torchiano et al. found that models help to improve design and documenta-
tion [26]. However, they also found that model usage is connected to extra
effort, especially due to a lack of supporting tooling. Forward et al. find that
models are primarily used for design and documentation, while code generation
is rather seldom [27]. Gorschek et al. focused on a different population, which
are programmers, partially working in industry and OSS [28]. Within their
sample design models are not use very extensively. However, models and UML
are found to be used mainly for communication purposes. Further, they report
on a higher use of models for less experienced programmers.

Case studies have also been performed in order to investigate the impact
of modeling/UML usage. For example, Baker et al. found an increase of
productivity when using UML in Motorola [4]. Nugroho et al. investigated an
industrial case study and found that UML usage has the potential to reduce
the defect density and, thus, increase the quality of software [30]. Just as in the
case described by Kuhn et al., most of the case studies draw a picture of model
use, where models are actually artifacts that are produced and consumed by
different people [31].

4.3.2 Modeling in Open Source Software

Much less work has been done on UML use in OSS. One reason for this is the
challenge to actually find cases that can be studied. For example, Badreddin et
al. studied 20 projects without finding UML, and concluded that it is barely
used in OSS [32]. Similarly, Ding et al. found only 19 projects with UML when
manually studying 2,000 OSS projects [24]. However, in our previous work, we
presented an approach that allows to find thousands of projects with UML by
mining GitHub [100].There are several investigations of single or very small
numbers of cases of OSS projects that use UML, e.g. by Yatani et al., who found
that models are used to describe system designs, but are rarely updated [21].
Osman et al. studied to what extent classes in the diagrams are implemented
in the code [22]. Finally, Kazman et al. investigate the Hadoop Distributed
File System to learn how documentation impacts communication and commit
behavior in the open source system [33]. There are some studies that approach
the use of models in OSS with a quantitative perspective, studying a large
number of projects. For example, to study the use of sketches, Chung et al.
collected insights from 230 persons contributing to 40 OSS projects [23]. Finally,
Langer et al. studied the lifespan of 121 enterprise architect models in OSS
projects [34].

However, to the best of our knowledge there is so far no quantitative study
targeting the use of UML within the team communication and its effects.

4.4. RESEARCH METHODOLOGY 71

4.4 Research Methodology

In this section, we describe our study method in detail. The overall process is
shown in Fig. 4.1.

20294 emails
1628 completeresp.
from 1559 projects

Sent
~ 12 millions projects Received

GHTorrent

Input to
analyses

485 completeresp.
485 respondents
458 projects

@ Data collection @ Filter data

{ umL M Non-UML J [Merge J[Filter J —'[@ Conduct Survey }—'I@ Analyse result

projects projects contributors projects

Define | 93 648 UML models Working

in 24797 UML proj. set

4 650 UML projects
99 319 contributors

Figure 4.1: Overall process

4.4.1 Data Collection

The first step is to identify UML files in GitHub repositories. In our previous
work, we analyzed 1.2 million GitHub repositories to identify UML files in
them [100]. In this study, we have extended the data collection to the whole
GitHub database. A number of changes have been made in order to adapt our
method to the retrieval and analysis of such a big dataset. In this section, we
briefly summarize the data collection steps and the changes that were made.

4.4.1.1 Obtaining the full list of GitHub projects

To obtain the list of projects, we used the data from the February 1st 2015
dump of GHTorrent [36]. From this dataset we identified a list of projects that
were not deleted and non-forks. As GHTorrent does not contain information
on the files in the repositories, we made use of the GitHub API to retrieve
the list of files, for a total number of 12,847,555 repositories. The result is a
JSON file per repository with information on the files hosted in the master (or
default) branch of the repository.

4.4.1.2 Identifying UML files

The next step was to identify UML files from the file list. First, potential UML
files were collected using several heuristic filters based on the creation and
storage nature of UML files. After that, an automated process was applied
to examine the existence of UML notation in the obtained files. A manual
validation was made to consolidate the results. Details about the identification
procedure are described in Section 4 in [100]. At the end of this step, we had
93,648 UML files from 24,797 repositories.

4.4.1.3 Extracting meta-data

For all projects that contain a UML file, development meta-data from the
repositories has been retrieved. Therefore, we use perceval, an evolution of
the well-known CVSanalY software [87], that allows to obtain these data in
JSON files, allowing to perform the data extraction process in parallel. It took

72 CHAPTER 4. PAPER C

the five instances of the tool over 4 weeks to complete this task. At the end,
and after removing 240 JSON files that contained 404 Not Found responses, we
had 24,125 JSON files that were parsed and normalized, and finally converted
into SQL.

4.4.2 Filtering the obtained projects and contributors

In this phase, we aimed at mitigating a number of known threats to validity
when mining GitHub, i.e., sample/short-time projects [90] or identification of
contributors [101].

4.4.2.1 Filtering short-time projects

For this paper we aim at projects that are interesting from an industry per-
spective. Thus, we focus on projects that are not short-term and that do not
consist of a single contributor. We define short-time projects as those projects
that have: i) active time (time between the first and the latest commits) less
then 6 months, OR ii) less than 2 contributors, OR iii) less than 10 commits.
After classifying and filtering short-time projects, 4,650 UML-projects (out of
24,125, we use the term UML project to refer to GitHub projects that contain
UML file(s)) and 2,701 (out of 17,101) non-UML projects met our requirements.
The final list of the projects is shared in our replication package!.

4.4.2.2 Merging duplicate contributors

A contributor can use different emails or usernames during the project time,
and thus a procedure has to be applied to merge all the identities into a unique
one. In our work, developers who have different identities are merged when
they have the same e-mail address or the same full name. In the case of the full
name, we consider them to be the same if at the full name is composed of at
least two words or of only a word and numbers, e.g., "argl23”. This is a rather
conservative approach, but it minimizes the number of false positives [101].
After running the script, the original 129,276 contributors result in 99,319
distinct ones.

4.4.3 Conducting the survey

In the following, we give a short overview about how we conducted the survey.

4.4.3.1 Participant

To ensure that we obtain a balanced picture, we had to consider the role that
contributors play within the OSS projects with UML. Two dimensions of roles
are important (each questioned person would fulfill a combination of roles in
these two dimensions):

e Founder (F) vs. non-founder (NF)

e Non-UML Contributor (NUC) vs. first UML Contributor (1UC) vs. UML
updater (non-1st contributor) (UC)

IThe replication package for this paper can be found at http://oss.models-db.com/
2017-icse-seip-uml/

http://oss.models-db.com/2017-icse-seip-uml/
http://oss.models-db.com/2017-icse-seip-uml/

4.4. RESEARCH METHODOLOGY 73

Consequently, each interviewed participant fulfills one of the following six
roles: F-1UC, F-NUC, F-UC, NF-1UC, NF-NUC, NF-UC. For each project, we
randomly selected three contributors, to whom we sent the questionnaire. The
selected three contributors had to fulfill one of the following three constellations
of roles.

e F-NUC, NF-1UC, NF-UC
e F-1UC, NF-UC, NF-NUC
e F-UC, NF-1UC, NF-NUC

For those projects where we could not identify any NUC or UC (e.g., projects
that have only one UML contributor), we contacted less contributors.

4.4.3.2 Questionnaire

The questionnaire has been designed to meet the following requirements:

Multiple roles We send different question sets depending on the role of the
contributor. For example, NUCs are asked whether they are aware that UML
models exist in the project, while UCs are asked if they think that NUCs are
aware of them. Thus, depending on the role, participants received between 5
(NF-NUC) and 19 (F-1UC) questions.

Exploration We use a funneling approach (from broad to narrow) when
designing the survey. For example, if a UC uses a UML model for architec-
ture/design purpose, we would ask if the model is adopted, and eventually,
who implemented the model. Accordingly, the number of questions will not
only differ among different roles, but also among respondents who have the
same role. In addition, to gain more insights, we use a mix of close-ended and
open-ended questions in the survey.

Personalized Contact To ensure that participants know what projects and

UML models we are referring to, we personalized the email with which we con-

tacted potential survey participants by concretely referring to his/her GitHub

identification, the name of project of interest, and (if applicable) an URL to his

(first) UML commit or to a UML file committed by someone else. By follow-

ing the URL (e.g., https://github.com/rvs-fluid-it/wizard-in-a-box/

blob/master/src/doc/wizard-in-a-box-design.png), participants could get
further contextual information about the UML models, for example commit

messages, commit date, etc.

We used the Lime Survey tool? as it offers the possibility to perform on-line
surveys. Our Lime Survey server is hosted at http://survey.models-db.com/.
Details about survey settings (questionnaire and its data-flow diagram) and
email templates can be found in the replication package.

2LimeSurvey homepage: https://wuw.limesurvey.org/

https://github.com/rvs-fluid-it/wizard-in-a-box/blob/master/src/doc/wizard-in-a-box-design.png
https://github.com/rvs-fluid-it/wizard-in-a-box/blob/master/src/doc/wizard-in-a-box-design.png
http://survey.models-db.com/
https://www.limesurvey.org/

74 CHAPTER 4. PAPER C

4.4.3.3 Sending out the survey

We sent 20,294 survey emails to OSS contributors in 6 days, from July 21
to July 26, 2016. More than 1,000 emails were not sent because of various
problems, including out-dated email addresses, etc. We sent reminder emails
after one week, and finally closed the survey in August 4, 2016. Altogether, we
received 2,230 responses, being 1,628 completed. After filtering responses that
belonged to short-term projects, we had 485 survey responses of respondents
from 458 projects.

Table 4.1: Number of emails sent, number of responses and number of responses
after filtering by participant categories

Founder Non-Founder
1UC | NUC | UC | 1UC | NUC | UC

SUM

Sent emails | 4509 3891 | 713 | 6737 3221 | 1223 | 20294
#£full resp. 373 293 68 564 210 | 120 1628
F#inc. resp. 167 105 24 214 56 36 602
#fil. resp. 84 79 27 176 80 39 485
Percent (%) 17.3 16.3 5.6 36.3 16.5 8.0 100

4.4.4 Data Analysis

First, we take into account completed responses only. Second, we do not
consider short-time projects.

Part of the questionnaire are free-text questions. We use these questions to
learn about phenomena for which we do not know a fixed set of answers yet.
The goal of analyzing the data is to identify re-occurring themes. Therefore,
we used a coding technique, following the constant comparison method as
described by Seaman [102]. We decided to use an empty starting set of codes
and develop them during the coding. For each of the question two of the authors
coded the answers independently. In a second step we inspected the codes
together to identify and if necessary resolve differences in the selected codes
and application of the coding. Afterward, we went a second time through the
data in order to ensure that the now fixed set of codes was assigned consistently.
We did this i) to increase the quality of the coding and ii) to decrease the
probability that we miss interesting aspects. As a final step we checked whether
codes occurred for more than one project, in order to prioritize those themes
that are of greater relevance.

Furthermore, we took those cases where we got multiple responses for the
same project and aggregated them. This aggregation was done as follows: we
interpret observation based questions (i.e., whether UML is used for commu-
nication) as reports about a project. Thus, aggregating a “yes” and a “no”
answer for the same project to a “yes” to indicate that there is a report about
a phenomenon for that project. Similarly, we prioritized “no” over “I have no
opinion”. “I do” and “I have seen other people doing” are merged to “I do”.

4.5. RESULTS/FINDINGS 75

4.5 Results/Findings

4.5.1 Respondent Demographics

A total of 2,230 respondents from 91 countries began the survey, with 1,628
completed compulsory questions of the survey. After filtering out survey
responses from short-time project participants, we ended up with 485 survey
responses of respondents from 458 projects.

Table 4.2 (Appendix 1) and Figure 4.16 (Appendix 2) show the distribution
of the respondents by country and continent, indicating the majority of the
responses originating from Europe with 57.52%, followed by North America
and South America.

Among the 485 respondents, 190 (about 40%) are founders of an OSS
project and 159 (32.8%) are non-UML contributors (Table 4.1). Regarding the
educational background (as shown in Fig. 4.2), 37.73% of respondents had a
Master’s degree, 30.31% a Bachelors, 16.29% a Ph.D., and 11.75% were still in
education. About 4% of the respondents identified themselves as autodidacts.
A vast majority of the respondents reported to be familiar with architecture
documentation in different formats, mostly UML (90.31%), then auto-generated
code documentation and software models in generic formats (78%) (Fig. 4.3).
Only a half of them (45%) were familiar with architectural notations on white
papers. There are programming languages where UML is more frequently
found (Smalltalk, Java, C# and C++). On the other side, UML has not that
much impact in the Objective-C and the Ruby community.

None/Autodidact mE 3.92%
In Education I 11.75%
Bachelor IS 30.31%
Master I 37 7 3%
PhD I 16.29%

0 50 100 150 200

#respondents

Figure 4.2: Distribution of respondents based on their highest educational
background

UML s 90 31%
Software Models in general I 77.94%
Auto-generated code documentations IEEEEEEGEGEGGGGGGNGNGNGNGNGNGG—G—G 77.94%
Manuals I 71.75%
White papers I 44 .74%

0 100 200 300 400 500
#respondents

Figure 4.3: Familiar architecture document formats (multiple choices were
allowed)

76 CHAPTER 4. PAPER C

4.5.2 Why is UML used?
4.5.2.1 What are the motivations to use UML modeling?

Fig. 4.4 shows the answers from 326 UCs (from 319 projects) about the
intent of UML files they added/updated. Most of UML files served for de-
sign/architecture and documentation purposes, with 70% and 71% of votes,
respectively. For about 18% of the projects, software verification was mentioned
as one of the main purposes. Refactoring and code generation was less usual
(14.11% and 12.85% of the projects).

Among 125 NUCs that claimed to be aware of the existence of UML models,
109 people (from 109 projects) reported to find UML helpful (Fig. 4.5). 79%
of the respondents found UML useful for understanding the OSS systems.
They also found UML models helpful as the models assisted in improving
communication within their project, guiding implementation and managing
quality of the project.

Documentation (e.g. model is reverse engineered) IEEEEEEEEEEEEEE————— 71.16%
Design/architecture for (existing/new) systems parts I 70.53%
Code generation —— 12.85%
Refactoring N 14.11%
Verification n——— 17.87%
Models are test data W 5.96%
Other mmm 6.27%

#resp = 326 0 50 100 150 200 250
#proj =319 # projects

Figure 4.4: Intent of UML models that were added/updated

Help to understand/comprehend the system better [N 5.23%
Help to communicate with other contributors better NN 64.22%

| followed the models to implement the system | NN 48.62%

| used the models for quality assurance purposes [N 22.02%

Other M 6.42%

#resp = 109
#proj =109 0 10 20 30 40 50 60 70 80 90
N=125 # priects

Figure 4.5: How did UML help non-UML contributors?

Results for SQ1.1: The majority of models are intended for creating software
designs and documenting software systems. Non-UML Contributors (NUC's)
benefit from UML models when it comes to understand a system and to
communication.

4.5. RESULTS/FINDINGS 77

0 62.7% 0 79.11%
o #resp = 326 80
#proj =319 0 #resp = 159
50 #proj =158
60
o S
&30 21% 21
2 16.3% 30 20.89%
20
10
10 I 0%
0 0
Yes No No opinion Yes No No opinion
(a) Do UCs think that other (b) Are NUCs aware of the existence of the
contributors are aware of UML? UML models?

Figure 4.6: Awareness of developers about the existence of UML in their
projects (by project)

4.5.2.2 What are the reasons not to use UML in projects?

To complement our finding on the motivations to introduce/use UML, we
asked the 16 NUCs who did not find UML models useful the reasons for
this. Respondents from 6 projects actually had not used models, finding
themselves not required to learn/use UML (e.g., “there was no demand to
do so”). Interestingly, in no case license problems for modeling tools were a
problem.

In 4 cases, the UML files were outdated. Other reasons that were brought
up in free-texts are: missing support for versioning models, a failed attempt to
understand the models, a preference for other means of communication (face
to face), a preference for other forms of modeling/sketching, a preference for
reading code rather than spending time for UML models, and the dislike of
UML (anti-UML attitude).

Results for SQi.2: Only a small number of respondents found UML not
useful.

4.5.3 1Is UML part of the interaction of contributors?

4.5.3.1 Developer’s awareness about the existence of UML in their
projects

To answer this question, we first asked creators/maintainers of UML models
whether they think that the models are known by developers of the projects
(summarized in Fig. 4.6a). In 62.7% of the 319 projects with responses, the
UCs/1UCs believed that UML models are known by the developers of the
projects. Second, we asked NUCs of projects that use UML if they are aware
of the existence of UML models in their projects (Fig. 4.6b). Surprisingly, for
the vast majority of projects (80%) NUCs stated that they are aware of UML
models.

To better understand the difference between the answers of UCs and NUCs,

78 CHAPTER 4. PAPER C

we looked in detail into the 24 projects for which we received responses from
NUGCs and UCs. In 10 out of 24 projects, NUCs and UCs differed. Interestingly,
UC(s) did not expect their UML to be known by other developers although
NUCs were aware of it in 8 of them. It seems that model creators tend to
underestimate the spread of their models.

Results for SQa.1: A majority of non-UML contributors are aware of the
UML models in their projects. Awareness is higher than the one expected by
the authors of the models.

4.5.3.2 Are UML models used during communication and team
decision making?

In a first step we asked founders and UCs whether UML models are considered
in the communication between contributors. Fig. 4.7 summarizes the 405 indi-
vidual responses from 388 projects. According to the responses, UML models
were considered in communications in a large majority of the participated
projects (60%).

As a step further, we asked whether UML models were used as a basis
for architectural decision making or mentoring activities. Respondents from
a majority of the projects recalled that they had used the UML models for
making architectural decisions (58.7%) and to explain each other different
aspects of the system (58.25%) (Fig. 4.8).

60.31%
250 ’ #resp = 405
J00 #proj =388
2 150
U
g 21.91%
- 100 - 17.78%

. I .

UML models areUML modelsare No opinion
considered not considered

Figure 4.7: Are the UML model(s) considered in the communication between
contributors? (per project)

B UML as basis for architecture decisions B UML as a basic for mentoring

50 58.76% 58.25% #resp = 405

= #proj = 388
32.73% 31.96%
[N |

I used UML models that I've seenother contributors | have not witnessed this
way used UML models for that use of UML models

projects
NN
S
3

Figure 4.8: Is UML a basis for architectural decisions or mentoring activities?
(per project)

4.5. RESULTS/FINDINGS 79

Results for SQg.o: UML models were considered as a mean of communication,
as a basis for architectural decisions, and for mentoring in a magjority of the
projects.

4.5.3.3 Are modeled designs adopted afterwards, during the imple-
mentation phase by teams of OSS contributors?

For those projects that claimed to have design models, we asked the question
“Was the UML model adopted during the implementation phase?”. Fig. 4.9
summarizes the answers of the 231 respondents from 225 projects. In most cases
UML models were adopted partly or completely during the implementation
phase (about 92%).

90 32.44% 35-56% #resp = 231

80
70 24.44% #proj =225
60
50
40
30 7.56%
20
0 [

The design was The design was The design was The design was
completely adopted with partially followed not considered at
adopted minor changes all

projects
.
o

Figure 4.9: Was the UML model adopted during the implementation phase?
(by project)

If the answers were that UML models were at least partially adopted, we
asked further questions to find out who and how many contributors implemented
the modeled designs. Fig. 4.10 and Fig. 4.11 summarise the responses per
project (based on 214 individual responses for 208 projects).

Creators of UML models are greatly involved in implementing the modeled
designs (in 88.5% of the projects). Experienced contributors helped in 35.5%
of the cases and novice contributors helped in around 13% of the cases.

In the majority of the projects (around 66%) more that one person partic-
ipated in the implementation of previously modeled designs. However, only
7% of the projects reported to have more than 5 contributors involved in such
joint implementation efforts.

The creators of the architectures/models GGG 8 46 %
Experienced contributors of the project [N 35.58%
Novice contributors of the project Il 13.46%

0
#resp = 214 Other I 2.88%

#proj =208 0 50 100 150 200
projects

Figure 4.10: Who implemented the UML models? (by project)

80 CHAPTER 4. PAPER C

11 - 20 persons
6 - 10 persons 1%
5%

> 20 persons
1%

#resp =214
#proj = 208

Figure 4.11: Number of contributors who implemented UML models in a
project

140 65.26% #resp=190

120 N =190 120 90.32% #resp=124
© 100 é 1gg 56.45% 64.52% N=190
g 2
< 80 s 60
g e g oas%
2 &
L 1842% 16.32% 0o - - - -

& Qo Qo £
Q‘f\z é\\ &
’ & & &
Yes No No opinion & (5’ \«(Q

(a) Do UML models help new contrib- (b) For what tasks do models help?
utors?

Figure 4.12: Responses for the questions whether UML models help new
contributors to join a project.

Results for SQa.3: Designs introduced with UML are in most cases adopted
during the implementation phase (fully or with slight changes). Most often
these designs are implemented by groups of 2-5 developers.

4.5.4 What is the impact/benefit of UML?
4.5.4.1 Can UML models support new contributors?

We used two perspectives to approach the question whether UML models
support new contributors.

First, we ask founders if they think that UML models help new contributors
to join their projects. We received 190 responses from 84 F-1UCs, 79 F-NUCs
and 27 F-UCs. For those who agreed, we further asked with what tasks models
help. Fig. 4.12 shows the responses in detail. 124 out of 190 respondents
(65.26%) agreed that UML models can help new contributors when joining
projects. They expected models to assist new contributors in comprehending the
system (90%), during implementation phases (65%), and when communicating
with other contributors (56.5%).

Second, we asked each contributor what software artifacts he/she used when

4.5. RESULTS/FINDINGS 81

they got started with the project. 485 contributors answered this question.
Despite the fact that most of respondents were familiar with architectural
documents (as shown in Section 4.5.1), source code still remains their first
choice to start working with an OSS project (81%) - see Fig. 4.13. Remarkably,
UML and software models in general were reported to be starting points for 55%
and 43.5% of the respondents, respectively. This is more than the proportion
of contributors who started using wikis, issues, manuals, and auto-generated
code documentation. This conforms with the answers given by the founders
about new contributors.

Software artifacts to get started working with OSS projects

Code mmmEsssssssss—— 81.44%
UML (Unified Modeling Language) nEmaaaasssmmmmmms 55 26%
Software Models in general ———— 43 51%
Wiki s 31.75%
Auto-generated code documentations I . 30.93%
Issues IS 30.31%
Manuals e 30.1%
#resp = 485 White papers mmm 11.13%

N=1458 0 100 200 300 400 500
#respondents

Figure 4.13: Software artifacts used by respondents to start working in their
OSS project (multiple choices were allowed).

Results for SQs.1: The results suggest that UML is helpful for new contributors
to get up to speed.

4.5.4.2 What are the impacts of using UML in OSS projects?

Because of their overview about the projects, we asked founders for their
impression about the impacts of introducing UML into their project. Fig. 4.14a
and Fig. 4.14b summarize the 190 answers for the two questions. A majority
of respondents (65.79%) reported positive impacts, while only a few founders
(<2%) encountered negative impacts. Only, 34% of the founders saw changes
in the way the contributors worked after UML was introduced.

To find out more about the changes, we asked those who observed changes
to describe the way the working routine had changed. We received 31 responses
to the open ended question. Comments positive to UML can be summarized in
following groups: i) Hiding complexity/improved overview (mentioned 18 times);
ii) Improved communication/ reduced ambiguity (6 times); iii) Prevention of
sub-standard implementations (5 times); iv) Improved scoping and partitioning
of work (3 times); v) Improved/easier to implement designs (9 times); vi)
Improved quality assurance (1 time); vii) Reduced architecture degradation (1
time).

82 CHAPTER 4. PAPER C

140 65.79% #resp =190 80 8947% resp=190

1 e Zg 33.68% N=190

100 o 26.84%
80 32.63% 40
60 30
40 20
20 1.58% 10
0

0 J—
Yes, the way No,thereisno Noopinion
of working change

changed

Positive Negative No specific
impact impact impact

(a) Overall impact (b) Impacts on working routine

Figure 4.14: Impacts of introducing UML in OSS projects

We also received two answers describing negative changes, complaining
about more work and the need for developers to learn UML notation.

Results for SQs.2: One third of respondents reported changes of the working
routine due to UML, mainly in the planning phase, the development process
and in communication. Most of the reported changes can be considered
positive.

4.5.4.3 Can UML models help to attract new contributors?

We ask founders if they think that UML models help to attract new contributors
to their projects. 190 founders answered this question. Fig. 4.15 shows the
responses in detail. Only a few of the respondents (21.58%) believe that UML
models can attract new contributors, while most of them think UML is not an
attractive factor (47.37%).

We asked those who think UML models attract new contributors for reasons
behind their thoughts. We received only 25 answers, including following
arguments: a) UML models make the project and its goals easier to understand
(mentioned 13 times), b) the potential of UML to help new contributors (by code
comprehension) (7 times), ¢) visual documentation is considered attractive (3
times), and d) UML can support communication between old and new members
(2 times).

It is worth mentioning that two of the projects have been based on executable

UML diagrams (xtUML), therefore the diagrams were considered a magnet to
contributors.

Two of the respondents who answered previously that UML is an attracting
factor, mentioned additional factors, i.e., the personality, the quality of the
model, and complexity of the project, e.g., “I feel that it depends on two
things: how perceptive the contributors are, and how elegantly and interesting
the models [were] structured”.

Results for SQs.3: Few founders think UML models attract new contributors
to their projects.

4.6. DISCUSSIONS 83

100 47.37% #resp =190
.80 N =190
b5 31.05%
S 60
= 2158%
o 40
I
0
Yes No No opinion

Figure 4.15: Do UML models attract new contributors to the project?

4.6 Discussions

In the following we discuss our insights in context of related works and impli-
cations of our results. Furthermore, we present the threats to validity.

4.6.1 Comparison to Insights to Related Works

In this section, our observations are compared with findings from related works.

Communication: The finding that UML is used for communication pur-
poses within OSS fits with observations that were already made about the
use of documentation by Kazman et al. [33] and sketches Chung et al. [23].
Furthermore, the results fit with the insights of Gorschek et al. [28], who also
observed a use for communication within industrial and OSS programmers.

New contributors: The observation that new contributors seem to benefit
from the use of UML confirms the first anecdotal evidence that Chung et al.
collected [23]. Gorschek et al. found similar tendencies in their survey, where
the use of models was found to be higher for novices [28].

Design and documentation: We could uncover a main similarity in the use
of UML in OSS and industry, as we observed that UML is mainly used for
design and documentation, and less for code generation within OSS. Similar
observations had been made for industrial usage by Torchiano et al. [26] and
Forward et al. [27].

Role splits: However, we also found a hint of a contrast in the use of UML.
While we observed that the architectures defined within UML models are often
implemented by multiple developers, as it happens within industry, we also
observed that in most cases all these contributors had participated in the model
creation. This seems to be in contrast to the practice in many industrial cases,
where those who create the models are not necessarily the ones who create the
code, as, e.g., observed by Kuhn et al. [31].

Finally, we made two observations that should be further studied, also in
industry. Passive benefits: Many participants who do not create UML models
consider its existence in the project beneficial. Partial adoption: Many models
are only partially adopted during implementation. It would be interesting to
see whether this conforms or is in contrast to industrial practice.

84 CHAPTER 4. PAPER C

4.6.2 Implications
4.6.2.1 OSS practitioners

Use UML to coordinate team work! We know that UML is used in industry
within teams - communicating and coordinating their work [6]. The insights
from this paper indicate that this practice might actually also work to coordinate
joint efforts within OSS teams with often remotely located developers.

4.6.2.2 OSS seniors

Provide UML to support your junior peers! In most investigated aspects the
answers given by NUCs showed a slight tendency to be more positive about
UML than the answers of UML contributors. Thus, it seems that models have
an impact on teams that affects not just the model creators positively. We hope
that OSS contributors feel motivated by these results to contributing more
models. Furthermore, it seems that the usage of UML helps new contributors
to get productive. This might be seen as an incentive for the introduction of
UML.

4.6.2.3 Industrial companies

Adopt team-modeling! The observed contrast that most people implementing
a model also participated in its creation, might be an interesting option for
industrial practice, too. Especially, when agile practices are applied, models
can be taken into the loop, e.g., as part of planing during Scrum meetings.

4.6.2.4 University teachers

Promote consumption as first experience when learning UML! Again, the
mentioned slight tendency of NUCs to be more positive about UML is worth
noting. It seems that the benefits of UML are more positive for consumers
than for creators. This is to be confirmed in future studies. It can have today
an impact on the way we teach modeling. Students still tend to learn modeling
by creating models. Our results imply that it might be a good idea to let them
consume models first.

4.6.3 Threats to Validity

In the following, we discuss internal and external threats to validity of our
study as introduced by Marczyk et al. [103].

Internal validity Some threats that are generic to research that use GitHub
data, as discussed by Kalliamvakou et al. [90], concern our study, too: First,
a large amount of GitHub projects are not software development projects or
have very few commits, only. Furthermore most GitHub projects are inactive
(Kalliamvakou et al. guess that the amount of active projects is around 22%).
To mitigate the impact of these threats on our study, we filtered the projects
based on the number of commits and size. Since such filters are always just
heuristics, it is probable that some of the remaining projects still are toy or
educational projects. However, we consider the remaining threat acceptable,

4.7. CONCLUSION AND FUTURE WORK 85

since we can assume that the vast majority of the here studied projects are
real software development projects.

We focus on projects that do use UML only, to ensure that questioned
developers have the experience of working in a project with UML. To ensure
nonetheless that persons that prefer to not use UML are not underrepresented,
we sent the questionnaire not just to persons who manipulated UML, but also
to contributors who did not change or introduce UML files (NUCs). Therefore,
we believe that our results still provide valuable insights.

External validity Our study focuses on OSS projects in GitHub. While we
do not expect a direct generalization of our results to closed source projects, we
expect them to be mostly generalizable to OSS projects. 16.29% of the survey
respondents had a PhD degree. This rate is higher than industry average.
We expect them to be more positive about UML, making them more likely
to have answered our questionnaire. Thus, there might be a selection bias
towards projects that have PhDs as contributors. We do not know whether
these projects are different in nature concerning our results. However, since
this concerns only 16.29% of our data points, we believe that our results are
nonetheless representative.

We did not limit the domain. However, there might be a bias towards
the domain that comes with the use of UML. Since we study the impact of
UML, when it is used, we consider our results valuable despite the possible
bias in study domains. We only have a look at UML models that are stored
as specific file formats. Although, it would be better to have a look at all
possible representations of UML models that exist, the selected set of formats
comprehends the standard ones (.uml and .xmi) and image files, being already
broad and allows a first valuable insight. Finally, in this study, we do not
distinguish between UML diagram types. We therefore do not conclude for
single UML types but for UML in general.

4.7 Conclusion and Future work

In this paper we study the use of UML in open source, in order to identify
commonalities and differences to the use of UML in industry. Therefore, we
performed a survey with contributors from 458 GitHub projects that include
UML files. Our study delivers some first insights that might help companies
to decide whether to promote UML usage in open source projects. In favor of
UML are the observations that UML actually helps new contributors and is
generally perceived as supportive. However, UML does not seem to have the
potential to attract new contributors. Further, we found that the use of UML
in open source projects is partially similar to industrial use. However, there
are also differences that should be considered when joining industrial projects
with open source efforts. For example, the fact that there seems to be barely
a split of roles between model creator and person implementing the modeled
system. Furthermore, we found that many modeled designs are only partially
followed during implementation.

86 CHAPTER 4. PAPER C

Future works We only use a part of survey responses in this study (ignoring
responses of short-time projects). In the future, we plan to compare whether
the results for these projects are different from the ones we found. Furthermore,
we plan to use meta data to investigate whether different aspects such as size,
active time, and number of contributors of a project affect the use of models
and the perception of developers within the projects. Nonetheless, our findings
from this study are drawn for UML in general. We would love to enrich our
dataset by classifying UML diagrams by diagram type. This will enable to see
whether diagram types affect the use of UML, and what UML diagrams are in
widest use.

4.8. APPENDIX 1. DISTRIBUTION OF SURVEY RESPONDENTS BY COUNTRIES

87

4.8 Appendix 1. Distribution of survey respon-
dents by countries

Table 4.2: Respondents by countries (Top 26)

Country No. responses || Country No. responses
United States 72 Russia 9
Germany 49 Austria 8
France 46 China, People’s Republic of | 8
Brazil 35 Czech Republic 8
Spain 26 India 8
United Kingdom | 21 Belgium 7
Switzerland 20 Colombia 6
unknown 15 Slovakia 6
Canada 14 Sweden 6
Italy 12 Bulgaria 5
Netherlands 11 China, Republic of (Taiwan) | 5
Argentina 9 Denmark 5
Poland 9 Finland 4

4.9 Appendix 2. Distribution of survey respon-
dents by continents

3.09%

I 8.25%

1.24%
~
o ‘

0.41%

Asia

= Europe
= North America

= South America

= unknown
® Oceania

= Africa

Figure 4.16: Distribution of survey respondents by continents

88

CHAPTER 4. PAPER C

Bibliography

[1]

[11]

G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling Lan-
guage For Object-Oriented Development, Documentation Set Version
1.0,” 1997.

B. Anda, K. Hansen, I. Gullesen, and H. K. Thorsen, “Experiences from
Introducing UML-based Development in a Large Safety-critical Project,”
Empirical Softw. Engg., vol. 11, no. 4, pp. 555-581, dec 2006.

B. Dobing and J. Parsons, “How UML is Used,” Commun. ACM, vol. 49,
no. 5, pp. 109-113, may 2006.

P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a large indus-
trial contextMotorola case study,” Model Driven Engineering Languages
and Systems, pp. 476-491, 2005.

M. Grossman, J. E. Aronson, and R. V. McCarthy, “Does UML make the
grade? Insights from the software development community,” Information
and Software Technology, vol. 47, no. 6, pp. 383-397, 2005.

C. F. J. Lange, M. R. V. Chaudron, and J. Muskens, “In practice: UML
software architecture and design description,” IEEFE Software, vol. 23,
no. 2, pp. 40-46, 2006.

W. J. Dzidek, E. Arisholm, and L. C. Briand, “A Realistic Empirical
Evaluation of the Costs and Benefits of UML in Software Maintenance,”
IEEFE Trans. Softw. Eng., vol. 34, no. 3, pp. 407-432, may 2008.

A. Nugroho and M. R. V. Chaudron, “A Survey into the Rigor of UML Use
and Its Perceived Impact on Quality and Productivity,” in Proceedings of
the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, 2008, pp. 90-99.

G. Scanniello, C. Gravino, and G. Tortora, “Investigating the Role of
UML in the Software Modeling and Maintenance-A Preliminary Industrial
Survey.” in ICEIS (8), 2010, pp. 141-148.

D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and R. Preto-
rius, “Empirical evidence about the UML: A systematic literature review,”
pp. 363-392, 2011.

M. Petre, “UML in practice,” in Proceedings - International Conference
on Software Engineering, 2013, pp. 722-731.

89

90

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Lung, J. Aranda, S. M. Easterbrook, and G. V. Wilson, “On the Diffi-
culty of Replicating Human Subjects Studies in Software Engineering,” in
Proceedings of the 30th International Conference on Software Engineering,

ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 191-200.

J. Liebowitz, Strategic intelligence: business intelligence, competitive
intelligence, and knowledge management. CRC Press, 2006.

H. Storrle, R. Hebig, and A. Knapp, “An Index for Software Engineer-
ing Models,” in International Conference on Model Driven Engineering
Languages and Systems (MoDELS) 201/, 2014, pp. 36—40.

C. Kobryn, “UML 2001: A Standardization Odyssey,” Commun. ACM,
vol. 42, no. 10, pp. 29-37, oct 1999.

G. Booch, Object Oriented Design with Applications. Redwood City,
CA, USA: Benjamin-Cummings Publishing Co., Inc., 1991.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-oriented Modeling and Design. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1991.

I. Jacobson, Object-oriented software engineering: a use case driven
approach. Pearson Education India, 1993.

R. France, J. Bieman, and B. H. C. Cheng, Repository for Model Driven
Development (ReMoDD). Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 311-317.

B. Karasneh and M. R. V. Chaudron, “Online Img2UML Repository: An
Online Repository for UML Models.” in EESSMOD@ MoDELS, 2013,
pp. 61-66.

K. Yatani, E. Chung, C. Jensen, and K. N. Truong, “Understanding how
and why open source contributors use diagrams in the development of
Ubuntu,” Proceedings of the 27th international conference on Human
factors in computing systems - CHI 09, p. 995, 2009.

H. Osman and M. R. V. Chaudron, “UML Usage in Open Source Software
Development : A Field Study,” in Proceedings of the 3rd International
Workshop on Ezxperiences and Empirical Studies in Software Modeling co-
located with 16th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2013), 2013, pp. 23-32.

E. Chung, C. Jensen, K. Yatani, V. Kuechler, and K. N. Truong, “Sketch-
ing and Drawing in the Design of Open Source Software,” in Proc.
VL/HCC, 2010, pp. 195-202.

W. Ding, P. Liang, A. Tang, H. Van Vliet, and M. Shahin, “How do open
source communities document software architecture: An exploratory sur-
vey,” in Proceedings of the IEEFE International Conference on Engineering
of Complex Computer Systems, ICECCS, 2014, pp. 136-145.

BIBLIOGRAPHY 91

[25]

[27]

[32]

[33]

A. M. Fernandez-Saez, M. Genero, and M. R. Chaudron, “Empirical
studies concerning the maintenance of UML diagrams and their use in
the maintenance of code: A systematic mapping study,” Information
and Software Technology, vol. 55, no. 7, pp. 1119-1142, 2013.

M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio, “Rele-
vance, benefits, and problems of software modelling and model driven
techniques - A survey in the Italian industry,” Journal of Systems and
Software, vol. 86, no. 8, pp. 2110-2126, 2013.

A. Forward, O. Badreddin, and T. C. Lethbridge, “Perceptions of software
modeling: a survey of software practitioners,” in 5th workshop from code

centric to model centric: evaluating the effectiveness of MDD (C2M:
EEMDD), 2010.

T. Gorschek, E. Tempero, and L. Angelis, “On the use of software design
models in software development practice: An empirical investigation,”
Journal of Systems and Software, vol. 95, pp. 176-193, 2014.

A. Nugroho and M. Chaudron, “A Survey of the Practice of Design — Code
Correspondence amongst Professional Software Engineers,” First Interna-

tional Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), pp. 467469, 2007.

A. Nugroho and M. R. V. Chaudron, “Evaluating the Impact of UML
Modeling on Software Quality : An Industrial Case Study,” Springer-
Verlag, pp. 181-195, 2009.

A. Kuhn, G. C. Murphy, and C. A. Thompson, An Ezxploratory Study of
Forces and Frictions Affecting Large-Scale Model-Driven Development.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 352—-367.

O. Badreddin, T. C. Lethbridge, and M. Elassar, “Modeling Practices in
Open Source Software,” Open Source Software: Quality Verification - 9th
IFIP W@ 2.13 International Conference, 0SS 2013, pp. 127-139, 2013.

R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto,
“Evaluating the Effects of Architectural Documentation: A Case Study
of a Large Scale Open Source Project,” IEEE Transactions on Software
Engineering, vol. 42, no. 3, pp. 220-260, mar 2016.

P. Langer, T. Mayerhofer, M. Wimmer, and G. Kappel, “On the usage
of UML: Initial results of analyzing open UML models,” Modellierung
2014, vol. P225, pp. 289-304, 2014.

G. D. Crnkovic, Constructive Research and Info-computational Knowledge
Generation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
359-380.

G. Gousios and D. Spinellis, “GHTorrent: Github’s data from a fire-
hose,” in Mining Software Repositories (MSR), 2012 9th IEEE Working
Conference on. IEEE, 2012, pp. 12-21.

92

BIBLIOGRAPHY

[37]

[45]

[46]

[47]

[48]

G. Robles, S. Koch, J. M. GonZAlEZ-BARAHonA, and J. Carlos, “Re-
mote analysis and measurement of libre software systems by means of the
CVSAnalY tool,” in Proceedings of the 2nd ICSE Workshop on Remote
Analysis and Measurement of Software Systems (RAMSS). IET, 2004,
pp. H1-56.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, FExperimentation in software engineering. Springer Sci-
ence & Business Media, 2012.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, Selecting Em-
pirical Methods for Software Engineering Research. London: Springer
London, 2008, pp. 285-311.

J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques
(8rd edition). Elsevier, 2011.

B. Karasneh, M. R. V. Chaudron, F. Khomh, and Y. G. Gueheneuc,
“Studying the Relation between Anti-Patterns in Design Models and in
Source Code,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, mar 2016, pp.
36-45.

C. F. J. Lange and M. R. V. Chaudron, “Managing model quality in UML-
based software development,” in Proceedings - 13th IEEE International
Workshop on Software Technology and Engineering Practice, STEP 2005,
ser. STEP ’05, vol. 2005. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 7-16.

ISO 25010:2011, “Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and
software quality models,” International Organization for Standardization,
Geneva, CH, Standard ISO 25010:2011, mar 2011.

J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEFE Transactions on software engineering,
vol. 28, no. 1, pp. 4-17, 2002.

J. A. McCall, P. K. Richards, and G. F. Walters, “Concepts and definitions
of software quality,” Factors in Software Quality, NTIS, vol. 1, 1977.

B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of the 2nd international conference on
Software engineering. TEEE Computer Society Press, 1976, pp. 592—605.

P. Pietsch, D. Reuling, U. Kelter, J. Folmer, and B. Vogel-Heuser, “Ex-
periences on the Quality and Availability of Test Models for Model
Differencing Tools,” in FMI 201/-Free Models Initiative Workshop Pro-
ceedings, 2014, p. 11.

J. Kramer, “Is abstraction the key to computing?” Communications of
the ACM, vol. 50, no. 4, pp. 36—42, 2007.

BIBLIOGRAPHY 93

[49]

[50]

[51]

[52]

[53]

[54]

D. R. Stikkolorum, C. Stevenson, and M. R. V. Chaudron, “Assessing
Software Design Skills and their Relation with Reasoning Skills.” in
EduSymp@ MoDELS, 2013, pp. 1-8.

F. Leung and N. Bolloju, “Analyzing the quality of domain models devel-
oped by novice systems analysts,” in System Sciences, 2005. HICSS’05.
Proceedings of the 38th Annual Hawaii International Conference on.
IEEE, 2005, pp. 188b—-188h.

B. Karasneh, R. Jolak, and M. R. V. Chaudron, “Using Examples for
Teaching Software Design: An Experiment Using a Repository of UML
Class Diagrams,” in Software Engineering Conference (APSEC), 2015
Asia-Pacific. TEEE, 2015, pp. 261-268.

K. C. Thramboulidis, “Using UML in control and automation: a model
driven approach,” in Industrial Informatics, 2004. INDIN °04. 2004 2nd
IEEE International Conference on, jun 2004, pp. 587-593.

C. Secchi, C. Fantuzzi, and M. Bonfe, “On the Use of UML for Model-
ing Physical Systems,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, apr 2005, pp. 3990-3995.

R. P. L. Buse and T. Zimmermann, “Information Needs for Software
Development Analytics,” in Proceedings of the 34th International Con-
ference on Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA:
IEEE Press, 2012, pp. 987-996.

“Enterprise Architect,” http://www.sparxsystems.com/.
“Visual Paradigm,” http://www.visual-paradigm.com/.

B. Karasneh and M. R. V. Chaudron, “Extracting UML models from
images,” in 2013 5th International Conference on Computer Science and
Information Technology, mar 2013, pp. 169-178.

B. Karasneh and M. R. V. Chaudron, “Img2UML: A System for Extract-
ing UML Models from Images,” in 2013 39th Euromicro Conference on
Software Engineering and Advanced Applications, sep 2013, pp. 134-137.

E. P. Costa, A. C. Lorena, A. Carvalho, and A. A. Freitas, “A review of
performance evaluation measures for hierarchical classifiers.” in Fvalua-
tion Methods for Machine Learning II: papers from the AAAI-2007 Work-
shop, AAAI Technical Report WS-07-05, C. Drummond, W. Elazmeh,
N. Japkowicz, and S. A. Macskassy, Eds. AAAI Press, jul 2007, pp.
182-196.

D. Blostein, E. Lank, and R. Zanibbi, Treatment of Diagrams in Document
Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp- 330-344.

D. Lu and Q. Weng, “A Survey of Image Classification Methods and
Techniques for Improving Classification Performance,” Int. J. Remote
Sens., vol. 28, no. 5, pp. 823-870, jan 2007.

94

BIBLIOGRAPHY

[62]

[63]

[64]

[68]

[69]

J. A. Shine and D. B. Carr, “A comparison of classification methods for
large imagery data sets,” JSM, pp. 3205-3207, 2002.

A. Mishchenko and N. Vassilieva, “Model-based chart image classification,”

in International Symposium on Visual Computing. Springer, 2011, pp.
476-485.

B. T. Messmer and H. Bunke, “Automatic learning and recognition of
graphical symbols in engineering drawings,” in International Workshop
on Graphics Recognition. Springer, 1995, pp. 123-134.

E. Lank, J. S. Thorley, and S. J.-S. Chen, “An interactive system for
recognizing hand drawn UML diagrams,” in Proceedings of the 2000
conference of the Centre for Advanced Studies on Collaborative research.

IBM Press, 2000, p. 7.

T. Hammond and R. Davis, “Tahuti: A geometrical sketch recognition
system for uml class diagrams,” in ACM SIGGRAPH 2006 Courses.
ACM, 2006, p. 25.

E. Lank, J. Thorley, S. Chen, and D. Blostein, “On-line recognition of
UML diagrams,” in Document Analysis and Recognition, 2001. Proceed-
ings. Sixth International Conference on. IEEE, 2001, pp. 356-360.

L. Fu and L. B. Kara, “From engineering diagrams to engineering models:
Visual recognition and applications,” Computer-Aided Design, vol. 43,
no. 3, pp. 278-292, 2011.

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect
lines and curves in pictures,” Communications of the ACM, vol. 15, no. 1,
pp. 11-15, 1972.

S. Suzuki and Others, “Topological structural analysis of digitized binary
images by border following,” Computer vision, graphics, and image
processing, vol. 30, no. 1, pp. 32-46, 1985.

J. C. Russ, The Image Processing Handbook (3rd Ed.). Boca Raton, FL,
USA: CRC Press, Inc., 1999.

M. A. Hall, “Correlation-based feature selection for machine learning,”
Hamilton, Tech. Rep., 1999.

“Waikato Environment for Knowledge Analysis (WEKA),”
http://www.cs.waikato.ac.nz/ml/weka/.

1. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M.
Ogden, “Pyramid methods in image processing,” RCA engineer, vol. 29,
no. 6, pp. 3341, 1984.

BIBLIOGRAPHY 95

[76]

[77]

(78]

[83]

A. Herout, M. Dubské, and J. Havel, “Review of hough transform for
line detection,” in Real-Time Detection of Lines and Grids. Springer,
2013, pp. 3-16.

D. Lagunovsky and S. Ablameyko, “Fast line and rectangle detection
by clustering and grouping,” in International Conference on Computer
Analysis of Images and Patterns. Springer, 1997, pp. 503-510.

K. Murakami and T. Naruse, “High speed line detection by Hough
transform in local area,” in Pattern Recognition, 2000. Proceedings. 15th
International Conference on, vol. 3. TEEE, 2000, pp. 467—470.

G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide, The (2Nd Edition) (Addison-Wesley Object Technology Se-
ries). Addison-Wesley Professional, 2005.

T. Ho-Quang, M. Chaudron, I. Samuelsson, J. Hjaltason, B. Karasneh,
and H. Osman, “Automatic classification of UML Class diagrams from
images,” in Proceedings - Asia-Pacific Software Engineering Conference,
APSEC, vol. 1, 2014.

G. Reggio, M. Leotta, and F. Ricca, “Who Knows/Uses What of the UML:
A Personal Opinion Survey,” in Model-Driven Engineering Languages
and Systems. Springer, 2014, pp. 149-165.

G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo, “Beyond source
code: the importance of other artifacts in software development (a case
study),” Journal of Systems and Software, vol. 79, no. 9, pp. 1233-1248,
2006.

B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the variation
and specialisation of workload - a case study of the Gnome ecosystem
community,” Empirical Software Engineering, vol. 19, no. 4, pp. 955-1008,
2014.

S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ant build sys-
tems,” in Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on. IEEE, 2010, pp. 42-51.

S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proceedings of the
33rd international conference on software engineering. ACM, 2011, pp.
141-150.

Y. Jiang and B. Adams, “Co-evolution of Infrastructure and Source Code
- An Empirical Study,” in 12th {IEEE/ACM} Working Conference on
Mining Software Repositories, { MSR} 2015, Florence, Italy, May 16-17,
2015, 2015, pp. 45-55.

G. Robles, J. M. Gonzéalez-Barahona, D. Izquierdo-Cortazar, and I. Her-
raiz, “Tools for the study of the usual data sources found in libre software
projects,” International Journal of Open Source Software and Processes,
vol. 1, no. 1, pp. 24-45, 2009.

96

BIBLIOGRAPHY

[88]

[89]

[94]

[95]

R. Hebig, T. Ho-Quang, G. Robles, and M. R. V. Chaudron, “List of
identified projects with UML and replication package,” http://oss.models-
db.com.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The Promises and Perils of Mining GitHub,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 92-101.

C. Gacek and B. Arief, “The many meanings of open source,” IEEE
software, vol. 21, no. 1, pp. 34-40, 2004.

B. Fitzgerald, “The transformation of open source software,” Mis Quar-
terly, pp. 587-598, 2006.

D. M. German, “The GNOME project: a case study of open source, global
software development,” Software Process: Improvement and Practice,
vol. 8, no. 4, pp. 201-215, 2003.

D. Riehle, “The economic case for open source foundations,” Computer,
vol. 43, no. 1, pp. 86-90, 2010.

@. Hauge, C. Ayala, and R. Conradi, “Adoption of open source soft-
ware in software-intensive organizations—A systematic literature review,”
Information and Software Technology, vol. 52, no. 11, pp. 1133-1154,
2010.

K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre open-
source software development: What we know and what we do not know,”
ACM Computing Surveys (CSUR), vol. 44, no. 2, p. 7, 2012.

K.-J. Stol, M. A. Babar, P. Avgeriou, and B. Fitzgerald, “A comparative
study of challenges in integrating Open Source Software and Inner Source
Software,” Information and Software Technology, vol. 53, no. 12, pp.
1319-1336, 2011.

D. Spinellis and C. Szyperski, “How is open source affecting software
development?” IEEE Software, vol. 21, no. 1, p. 28, 2004.

C. Hauff and G. Gousios, “Matching GitHub developer profiles to job
advertisements,” in Proceedings of the 12th Working Conference on
Mining Software Repositories. TEEE Press, 2015, pp. 362-366.

R. Hebig, T. Ho-Quang, M. Chaudron, G. Robles, and M. Fernandez,
“The quest for open source projects that use UML: Mining GitHub,” in
Proceedings - 19th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2016, 2016.

BIBLIOGRAPHY 97

[101] 1. S. Wiese, I. Steinmacher, C. Treude, J. T. D. Silva, and M. Gerosa,
“Who is who in the mailing list? Comparing six disambiguation heuristics
to identify multiple addresses of a participant,” in Proceedings of the
32nd International Conference on Software Maintenance and Evolution,
2016.

[102] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEFE Transactions on software engineering, vol. 25, no. 4,
pp. 557-572, 1999.

[103] G. Marczyk, D. DeMatteo, and D. Festinger, Essentials of research design
and methodology. John Wiley & Sons Inc, 2005.

	Abstract
	Acknowledgment
	List of Publications
	Personal Contribution
	Introduction
	Research Focus
	Goals of the PhD study
	Goals and Outcomes of the Licentiate thesis
	Research questions of the Licentiate thesis

	Background
	The Unified Modeling Language (UML): a short overview
	Effort of collecting UML for empirical research
	UML use and impacts of using UML in software engineering projects
	UML use in industry
	UML in OSS projects

	Methodology
	Constructive research method
	Empirical methods

	Contributions
	Paper A: Automatic classification of UML class diagrams from images
	Paper B: The quest for open source projects that use UML: mining GitHub
	Paper C: Practices and perceptions of UML use in open source projects
	Answers to research questions

	Threats to validity
	Future Work
	Curating the dataset
	Extending understanding about UML use: success and failure factors
	Building guidelines for UML use
	Other directions

	Paper A
	Introduction
	Related Work
	Image classification
	Diagram feature extraction

	Research Questions
	Approach
	Overall framework
	Image processing
	Feature extraction
	Which features set UML CD apart from other diagrams?
	Extraction features in details

	UML CD classification
	Choosing the most suitable classification algorithm
	Training classifier

	Analyse Result

	Experiment Description
	Dataset
	Evaluation measures
	Features Predictive Performance
	Classification Algorithm Performance

	Experiment settings

	Analysis Of Results
	RQ1: Influence of features
	RQ2: Classification algorithms performance
	RQ3: Set of features Performance

	Discussion
	Image Processing Time
	Image Processing Features Performance
	Classification Algorithms
	Threats to validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity

	Conclusions and Future Work

	Paper B
	Introduction
	Research questions
	Related research
	Use of UML in FOSS
	Mining

	Methodology
	Occurrence of UML
	Data Collection
	UML filters
	Identify UML images
	Identify UML files among .xmi and .uml files

	Metadata Extraction and Querying

	Results
	RQ1: UML in GitHub projects
	RQ2: Versions of UML models
	RQ3: Time of UML model introduction
	RQ4: Time span of active UML
	RQ5: Duplicates

	Discussion
	Threats to validity
	Threats to construct validity
	Threats to external validity
	Threats to conclusion validity

	Conclusions

	Paper C
	Introduction
	Research Question
	Related work
	Modeling in Industry
	Modeling in Open Source Software

	Research Methodology
	Data Collection
	Obtaining the full list of GitHub projects
	Identifying UML files
	Extracting meta-data

	Filtering the obtained projects and contributors
	Filtering short-time projects
	Merging duplicate contributors

	Conducting the survey
	Participant
	Questionnaire
	Sending out the survey

	Data Analysis

	Results/Findings
	Respondent Demographics
	Why is UML used?
	What are the motivations to use UML modeling?
	What are the reasons not to use UML in projects?

	Is UML part of the interaction of contributors?
	Developer's awareness about the existence of UML in their projects
	Are UML models used during communication and team decision making?
	Are modeled designs adopted afterwards, during the implementation phase by teams of OSS contributors?

	What is the impact/benefit of UML?
	Can UML models support new contributors?
	What are the impacts of using UML in OSS projects?
	Can UML models help to attract new contributors?

	Discussions
	Comparison to Insights to Related Works
	Implications
	OSS practitioners
	OSS seniors
	Industrial companies
	University teachers

	Threats to Validity

	Conclusion and Future work
	Appendix 1. Distribution of survey respondents by countries
	Appendix 2. Distribution of survey respondents by continents

	Bibliography

