Practices and Perceptions of UML Use in Open Source Projects

Truong Ho-Quang*, Regina Hebig*, Gregorio Roblest, Michel R.V. Chaudron*, Miguel Angel Fernandez'
*Chalmers — Géteborg University, Goteborg, Sweden
{truongh, hebig, chaudron} @ chalmers.se
TGSyC/LibreSoft, Universidad Rey Juan Carlos, Madrid, Spain
grex@gsyc.urjc.es, mafesan.nsn@ gmail.com

Abstract—Context: Open Source is getting more and more
collaborative with industry. At the same time, modeling is today
playing a crucial role in development of, e.g., safety critical
software. Goal: However, there is a lack of research about the
use of modeling in Open Source. Our goal is to shed some
light into the motivation and benefits of the use of modeling
and its use within project teams. Method: In this study, we
perform a survey among Open Source developers. We focus on
projects that use the Unified Modeling Language (UML) as a
representative for software modeling. Results: We received 485
answers of contributors of 458 different Open Source projects.
Conclusion: Collaboration seems to be the most important
motivation for using UML. It benefits new contributors and
contributors who do not create models. Teams use UML during
communication and planning of joint implementation efforts.

Keywords-UML; architecture documentation; OSS projects;
GitHub; motivation; communication; effectiveness of UML

I. INTRODUCTION

Open Source Software (OSS), which has its roots in
the free software movement, started partially as a counter-
movement to the software industry in the 80s and 90s [1].
Even though, there was a clear border between OSS and
industry, the situation started to change in the late 90s
and early 2000s. In those years, some industry started to
early adopt the OSS movement practices, collaborating with
communities [3], or some companies were created around
some communities [4]. Many projects created foundations
to serve as an umbrella to collaborate and integrate software
industry partners [5].

Thus, we have witnessed a process and technology transfer
between OSS and industry that has made the line between
both be vague nowadays. Notable contributions from OSS to
industry have been technologies, such as git and GitHub, and
community-managing practices, although the list of adoptions
is much larger [6]. On the other hand, OSS has embraced
practices from industry, such as (modern) code review prac-
tices and planning and requirements analysis mechanisms [7].
Companies with a large pool of developers try to have an
“internal” OSS-like ecosystem, a concept coined as inner
source [8]. Many OSS practices are commonly taught at
universities, and young graduates start their professional ca-
reers with experience in OSS, whether in languages (Python,
Perl, Ruby...), products (JQuery, Hadoop...) and tools (GCC
compiler tool chain, git and GitHub...) [9]. And the software

industry is looking into popular OSS repositories, such as
GitHub, to find suitable candidates to fill open development
positions [10].

In this regard, we have seen a clash of two worlds, resulting
in new practices where industry sometimes has adopted
elements from OSS and vice versa. As the trend seems
to go on, we would like to draw attention on modeling,
specifically on the use of Unified Modeling Language (UML)
in OSS. UML has been around as a graphical language
for modeling software systems for about 25 years. As far
as it is known, UML is not yet frequently used in OSS
projects, with a rather marginal use [11]. OSS is known
to be programming-driven, with other tasks having room
for further improvement [12]. However, modeling is used in
major companies [14]. Modeling is, thus, an area where we
can find a gap between OSS and industry. Given that the use
of UML in OSS is not very well-known, we would like to
shed some light into this issue with the aim of discovering
how UML is used and whether it is considered useful. We
hope that the results will help to understand whether the use
of UML in OSS helps these projects and whether industry
working with OSS projects should promote its use.

To this end, we used a technique that we developed to find
UML use in GitHub projects [11]. This effort showed the
feasibility of our approach and triggered us to come up with
various research questions addressed in this paper, where we
scanned through the majority of non-forked GitHub projects
(over 12 million of projects) and identified which of them
use UML.

We performed a large scale survey directed at those
projects that use UML, with focus on how it is used and
impacts development activities. The contributions of this
research are: i) the identification of a large set of OSS
projects that use UML, and ii) insights from a large scale
survey of OSS developers that use UML. Amongst other
insights, we have found that UML is used to coordinate the
development. Furthermore the use of UML seems to help
new contributors to get started, although it does not seem
to attract new contributors. The set of projects we identify
are a valuable resource for future empirical studies regarding
UML.

The rest of this paper is constructed as follow: We
formulate a number of research questions in Section II,

then introduce related work in Section III and describe
our research method in Section IV. Section V presents
our findings. Our findings, possible threats to validity and
implications of our research are discussed in Section VI.
Conclusions can be found in Section VII.

II. RESEARCH QUESTION

To better understand the use of UML in OSS, we formulate
the following three main research questions:
RQ;: Why is UML used in OSS projects?

To get an impression of the role of UML models in OSS
projects, we formulate this first question as the following.

e SO;.;: What are the motivations to use UML modeling?
o SQ;: What are the reasons not to use UML in projects?

RQ;: Is UML part of the interaction of (a team of) contrib-
utors?

Teams and interaction between developers play an im-
portant role within todays software intensive industry [13].
Models are used as basis for planning and work coordination.
However, it is an open question, whether UML models fulfill
a similar role in OSS projects. We approach this question
from three aspects: 1) awareness of developers about the
existence of UML models within the project, 2) the use of
UML during project planning and communication, and 3) the
role of UML during joined implementation efforts. These
three sub-research questions are structured as follows:

e SO>;: Are developers aware of the existence of UML
in their projects?

e SO, Are UML models used during communication
and team decision making?

o S03: Are modeled designs adopted afterward during
the implementation phase by teams of OSS contribu-
tors?

RQj3;: What is impact/benefit of UML? Much research has
been performed to identify benefits of UML usage in industry.
However, it is not yet clear whether UML usage impacts
or even benefits development in OSS. Again, we consider
three different perspectives: 1) the role of UML for novice
contributors, 2) the impact of UML on the working routine,
and 3) the impact of UML on the attractiveness of a
project for potential contributors. The following sub-research
questions are structured:

e SQ;3;: Can UML models support new contributors?

e SQ3,: What are the impacts of using UML in OSS
projects?

e SQ33: Can UML models help to attract new contribu-
tors?

III. RELATED WORK

In the following we discuss related studies about UML or
modeling in industry and OSS.

A. Modeling in Industry

Modeling has been widely studied in industry, in particular
in several surveys. Torchiano et al. found that models help to
improve design and documentation [14]. However, they also
found that model usage is connected to extra effort, especially
due to a lack of supporting tooling. Forward et al. find that
models are primarily used for design and documentation,
while code generation is rather seldom [16]. Gorschek et al.
focused on a different population, which are programmers,
partially working in industry and OSS [15]. Within their
sample design models are not use very extensively. However,
models and UML are found to be used mainly for commu-
nication purposes. Further, they report on a higher use of
models for less experienced programmers.

Case studies have also been performed in order to investi-
gate the impact of modeling/UML usage. For example, Baker
et al. found an increase of productivity when using UML
in Motorola [17]. Nugroho et al. investigated an industrial
case study and found that UML usage has the potential to
reduce the defect density and, thus, increase the quality of
software [18]. Just as in the case described by Kuhn et al.,
most of the case studies draw a picture of model use, where
models are actually artifacts that are produced and consumed
by different people [13].

B. Modeling in Open Source Software

Much less work has been done on UML use in OSS.
One reason for this is the challenge to actually find cases
that can be studied. For example, Badreddin et al. studied
20 projects without finding UML, and concluded that it is
barely used in OSS [19]. Similarly, Ding et al. found only
19 projects with UML when manually studying 2,000 OSS
projects [20]. However, in our previous work, we presented
an approach that allows to find thousands of projects with
UML by mining GitHub [11].There are several investigations
of single or very small numbers of cases of OSS projects that
use UML, e.g. by Yatani et al., who found that models are
used to describe system designs, but are rarely updated [21].
Osman et al. studied to what extent classes in the diagrams
are implemented in the code [22]. Finally, Kazman et al.
investigate the Hadoop Distributed File System to learn how
documentation impacts communication and commit behavior
in the open source system [23]. There are some studies
that approach the use of models in OSS with a quantitative
perspective, studying a large number of projects. For example,
to study the use of sketches, Chung et al. collected insights
from 230 persons contributing to 40 OSS projects [24].
Finally, Langer et al. studied the lifespan of 121 enterprise
architect models in OSS projects [25].

However, to the best of our knowledge there is so far no
quantitative study targeting the use of UML within the team
communication and its effects.

IV. RESEARCH METHODOLOGY

In this section, we describe our study method in detail.
The overall process is shown in Fig. 1.
A. Data Collection

The first step is to identify UML files in GitHub reposito-
ries. In our previous work, we analyzed 1.2 million GitHub
repositories to identify UML files in them [11]. In this study,
we have extended the data collection to the whole GitHub
database. A number of changes have been made in order
to adapt our method to the retrieval and analysis of such a
big dataset. In this section, we briefly summarize the data
collection steps and the changes that were made.

1) Obtaining the full list of GitHub projects: To obtain the
list of projects, we used the data from the February 1st 2015
dump of GHTorrent [26]. From this dataset we identified
a list of projects that were not deleted and non-forks. As
GHTorrent does not contain information on the files in the
repositories, we made use of the GitHub API to retrieve the
list of files, for a total number of 12,847,555 repositories.
The result is a JSON file per repository with information
on the files hosted in the master (or default) branch of the
repository.

2) Identifying UML files: The next step was to identify
UML files from the file list. First, potential UML files were
collected using several heuristic filters based on the creation
and storage nature of UML files. After that, an automated
process was applied to examine the existence of UML
notation in the obtained files. A manual validation was made
to consolidate the results. Details about the identification
procedure are described in Section 4 in [11]. At the end of
this step, we had 93,648 UML files from 24,797 repositories.

3) Extracting meta-data: For all projects that contain a
UML file, development meta-data from the repositories has
been retrieved. Therefore, we use perceval, an evolution
of the well-known CVSanalY software [28], that allows to
obtain these data in JSON files, allowing to perform the data
extraction process in parallel. It took the five instances of
the tool over 4 weeks to complete this task. At the end, and
after removing 240 JSON files that contained 404 Not Found
responses, we had 24,125 JSON files that were parsed and
normalized, and finally converted into SQL.

B. Filtering the obtained projects and contributors

In this phase, we aimed at mitigating a number of known
threats to validity when mining GitHub, i.e., sample/short-
time projects [29] or identification of contributors [30].

1) Filtering short-time projects: For this paper we aim
at projects that are interesting from an industry perspective.
Thus, we focus on projects that are not short-term and that
do not consist of a single contributor. We define short-
time projects as those projects that have: i) active time
(time between the first and the latest commits) less then
6 months, OR ii) less than 2 contributors, OR iii) less
than 10 commits. After classifying and filtering short-time

projects, 4,650 UML-projects (out of 24,125, we use the term
UML project to refer to GitHub projects that contain UML
file(s)) and 2,701 (out of 17,101) non-UML projects met our
requirements. The final list of the projects is shared in our
replication package'.

2) Merging duplicate contributors: A contributor can
use different emails or usernames during the project time,
and thus a procedure has to be applied to merge all the
identities into a unique one. In our work, developers who
have different identities are merged when they have the same
e-mail address or the same full name. In the case of the
full name, we consider them to be the same if at the full
name is composed of at least two words or of only a word
and numbers, e.g., “argl23”. This is a rather conservative
approach, but it minimizes the number of false positives [30].
After running the script, the original 129,276 contributors
result in 99,319 distinct ones.

C. Conducting the survey

In the following, we give a short overview about how we
conducted the survey.

1) Participant: To ensure that we obtain a balanced
picture, we had to consider the role that contributors play
within the OSS projects with UML. Two dimensions of
roles are important (each questioned person would fulfill
a combination of roles in these two dimensions):

« Founder (F) vs. non-founder (NF)
o Non-UML Contributor (NUC) vs. first UML Contributor
(1UC) vs. UML updater (non-1st contributor) (UC)

Consequently, each interviewed participant fulfills one of the
following six roles: F-1UC, F-NUC, F-UC, NF-1UC, NF-
NUC, NF-UC. For each project, we randomly selected three
contributors, to whom we sent the questionnaire. The selected
three contributors had to fulfill one of the following three
constellations of roles.

« F-NUC, NF-1UC, NF-UC
« F-1UC, NF-UC, NF-NUC
« F-UC, NF-1UC, NF-NUC

For those projects where we could not identify any NUC or
UC (e.g., projects that have only one UML contributor), we
contacted less contributors.

2) Questionnaire: The questionnaire has been designed
to meet the following requirements:

Multiple roles: We send different question sets depend-
ing on the role of the contributor. For example, NUCs are
asked whether they are aware that UML models exist in the
project, while UCs are asked if they think that NUCs are
aware of them. Thus, depending on the role, participants
received between 5 (NF-NUC) and 19 (F-1UC) questions.

IThe replication package for this paper can be found at http://oss.models-
db.com/2017-icse-seip-uml/

GHTorrent

~ 12 millions projects

20 294 emails
1628 completeresp.
from 1559 projects

Sent
Received

Input to
analyses

485 completeresp.
485 respondents
458 projects

] =® Conduct Survey |—'|‘® Analyse result ‘|

@ Data collection @ Filter data
uMmL Non-UML Merge Filter
projects projects contributors projects
Define | 93 648 UML models Working | 4 650 UML projects
in 24797 UML proj. set | 99319 contributors

Figure 1: Overall process

Exploration: We use a funneling approach (from broad
to narrow) when designing the survey. For example, if a UC
uses a UML model for architecture/design purpose, we would
ask if the model is adopted, and eventually, who implemented
the model. Accordingly, the number of questions will not
only differ among different roles, but also among respondents
who have the same role. In addition, to gain more insights,
we use a mix of close-ended and open-ended questions in
the survey.

Personalized Contact: To ensure that participants know
what projects and UML models we are referring to, we
personalized the email with which we contacted poten-
tial survey participants by concretely referring to his/her
GitHub identification, the name of project of interest, and
(if applicable) an URL to his (first) UML commit or
to a UML file committed by someone else. By follow-
ing the URL (e.g., https://github.com/rvs-fluid-it/wizard-in-
a-box/blob/master/src/doc/wizard-in-a-box-design.png), par-
ticipants could get further contextual information about the
UML models, for example commit messages, commit date,
etc.

We used the Lime Survey tool” as it offers the possibility
to perform on-line surveys. Our Lime Survey server is hosted
at http://survey.models-db.com/. Details about survey settings
(questionnaire and its data-flow diagram) and email templates
can be found in the replication package.

3) Sending out the survey: We sent 20,294 survey emails
to OSS contributors in 6 days, from July 21 to July 26,
2016. More than 1,000 emails were not sent because of
various problems, including out-dated email addresses, etc.
We sent reminder emails after one week, and finally closed
the survey in August 4, 2016. Altogether, we received 2,230
responses, being 1,628 completed. After filtering responses
that belonged to short-term projects, we had 485 survey
responses of respondents from 458 projects.

D. Data Analysis

First, we take into account completed responses only.
Second, we do not consider short-time projects.

Part of the questionnaire are free-text questions. We use
these questions to learn about phenomena for which we do

2LimeSurvey homepage: https://www.limesurvey.org/

Table I: Number of emails sent, number of responses and
number of responses after filtering by participant categories

Founder Non-Founder SUM

IUC | NUC | UC | 1IUC | NUC ucC
Sent emails | 4509 | 3891 | 713 | 6737 | 3221 1223 | 20294
#full resp. 373 293 68 564 210 120 1628
#inc. resp. 167 105 24 214 56 36 602
#fil. resp. 84 79 27 176 80 39 485
Percent(%) 17.3 16.3 5.6 36.3 16.5 8.0 100

not know a fixed set of answers yet. The goal of analyzing the
data is to identify re-occurring themes. Therefore, we used a
coding technique, following the constant comparison method
as described by Seaman [31]. We decided to use an empty
starting set of codes and develop them during the coding. For
each of the question two of the authors coded the answers
independently. In a second step we inspected the codes
together to identify and if necessary resolve differences in
the selected codes and application of the coding. Afterward,
we went a second time through the data in order to ensure
that the now fixed set of codes was assigned consistently.
We did this i) to increase the quality of the coding and ii)
to decrease the probability that we miss interesting aspects.
As a final step we checked whether codes occurred for more
than one project, in order to prioritize those themes that are
of greater relevance.

Furthermore, we took those cases where we got multiple
responses for the same project and aggregated them. This
aggregation was done as follows: we interpret observation
based questions (i.e., whether UML is used for communica-
tion) as reports about a project. Thus, aggregating a “yes”
and a “no” answer for the same project to a “yes” to indicate
that there is a report about a phenomenon for that project.
Similarly, we prioritized “no” over “I have no opinion”. “I
do” and “I have seen other people doing” are merged to “I
do”.

V. RESULTS/FINDINGS

A. Respondent Demographics

A total of 2,230 respondents from 91 countries began the
survey, with 1,628 completed compulsory questions of the
survey. After filtering out survey responses from short-time
project participants, we ended up with 485 survey responses

of respondents from 458 projects. Among the 485 respon-
dents, 190 (about 40%) are founders of an OSS project and
159 (32.8%) are non-UML contributors (Table I). Regarding
the educational background (as shown in Fig. 2), 37.73%
of respondents had a Master’s degree, 30.31% a Bachelors,
16.29% a Ph.D., and 11.75% were still in education. About
4% of the respondents identified themselves as autodidacts.
A vast majority of the respondents reported to be familiar
with architecture documentation in different formats, mostly
UML (90.31%), then auto-generated code documentation and
software models in generic formats (78%) (Fig. 3). Only a
half of them (45%) were familiar with architectural notations
on white papers. There are programming languages where
UML is more frequently found (Smalltalk, Java, C# and C++).
On the other side, UML has not that much impact in the
Objective-C and the Ruby community.

None/Autodidact s 3.92%

In Education |IEEE————— 11.75%

Bachelor 30.31%

Master 37.73%
PhD I 16.29%

0 50 100 150 200

Hrespondents

Figure 2: Distribution of respondents based on their highest
educational background

umL 90.31%
77.94%
77.94%
Manuals ST 71 75%

Software Models in general

Auto-generated code documentations

White papers I 44 74%

0 100 200 300 400 500

Hrespondents

Figure 3: Familiar architecture document formats (multiple
choices were allowed)

B. Why is UML used?
1) What are the motivations to use UML modeling?:

Fig. 4 shows the answers from 326 UCs (from 319
projects) about the intent of UML files they added/updated.
Most of UML files served for design/architecture and docu-
mentation purposes, with 70% and 71% of votes, respectively.
For about 18% of the projects, software verification was
mentioned as one of the main purposes. Refactoring and
code generation was less usual (14.11% and 12.85% of the
projects).

Among 125 NUCs that claimed to be aware of the
existence of UML models, 109 people (from 109 projects)
reported to find UML helpful (Fig. 5). 79% of the respon-
dents found UML useful for understanding the OSS systems.
They also found UML models helpful as the models assisted

in improving communication within their project, guiding
implementation and managing quality of the project.

Documentation (e.g. model is reverse engineered) 71.16%

Design/architecture for (existing/new) systems parts 70.53%
Code generation I 12.85%
Refactoring mmmm——u 14.11%
Verification ———— 17.87%
Models are test data W 5.96%
Other mmm 6.27%

#resp =326 0 50 100 150 200 250
#proj =319

projects

Figure 4: Intent of UML models that were added/updated

Help to understand/comprehend the system better | 5.23%
Help to communicate with other contributors better [N 64.22%
| followed the models to implement the system | 48.62%
| used the models for quality assurance purposes | 22.02%

Other WM 6.42%
#resp = 109

#proj =109 0 10 20 30 40 50 60 70 80 90
N=125 # prjects

Figure 5: How did UML help non-UML contributors?

Results for SQ.1: The majority of models are intended
for creating software designs and documenting software
systems. Non-UML Contributors (NUCs) benefit from UML
models when it comes to understand a system and to
communication.

2) What are the reasons not to use UML in projects?:
To complement our finding on the motivations to intro-
duce/use UML, we asked the 16 NUCs who did not find
UML models useful the reasons for this. Respondents from
6 projects actually had not used models, finding themselves
not required to learn/use UML (e.g., “there was no demand
to do so”). Interestingly, in no case license problems for
modeling tools were a problem.

In 4 cases, the UML files were outdated. Other reasons
that were brought up in free-texts are: missing support for
versioning models, a failed attempt to understand the models,
a preference for other means of communication (face to
face), a preference for other forms of modeling/sketching,
a preference for reading code rather than spending time for
UML models, and the dislike of UML (anti-UML attitude).

Results for SQy»: Only a small number of respondents found
UML not useful.

C. Is UML part of the interaction of contributors?

1) Developer’s awareness about the existence of UML in
their projects:
To answer this question, we first asked creators/maintainers of
UML models whether they think that the models are known
by developers of the projects (summarized in Fig. 6a). In

o e27% % 79.11%
60 #resp = 326 80
#proj =319 70 #resp = 159
50 #proj =158
60
8% g 5o
3 °
£30 21% §40
0 16.3% 30 20.89%
20
10 I o I 0%
o o
Yes No No opinion Yes No No opinion

(a) Do UCs think that other
contributors are aware of UML? tence of the UML models?

Figure 6: Awareness of developers about the existence of
UML in their projects (by project)

62.7% of the 319 projects with responses, the UCs/1UCs
believed that UML models are known by the developers of
the projects. Second, we asked NUCs of projects that use
UML if they are aware of the existence of UML models in
their projects (Fig. 6b). Surprisingly, for the vast majority
of projects (80%) NUC:s stated that they are aware of UML
models.

To better understand the difference between the answers of
UCs and NUCs, we looked in detail into the 24 projects for
which we received responses from NUCs and UCs. In 10 out
of 24 projects, NUCs and UCs differed. Interestingly, UC(s)
did not expect their UML to be known by other developers
although NUCs were aware of it in 8 of them. It seems
that model creators tend to underestimate the spread of their
models.

Results for SQ,.1: A majority of non-UML contributors are
aware of the UML models in their projects. Awareness is
higher than the one expected by the authors of the models.

2) Are UML models used during communication and team

decision making?:
In a first step we asked founders and UCs whether UML
models are considered in the communication between con-
tributors. Fig. 7 summarizes the 405 individual responses
from 388 projects. According to the responses, UML models
were considered in communications in a large majority of
the participated projects (60%).

As a step further, we asked whether UML models were
used as a basis for architectural decision making or mentoring
activities. Respondents from a majority of the projects
recalled that they had used the UML models for making
architectural decisions (58.7%) and to explain each other
different aspects of the system (58.25%) (Fig. 8).

Results for SQy,: UML models were considered as a mean
of communication, as a basis for architectural decisions,
and for mentoring in a majority of the projects.

3) Are modeled designs adopted afterwards, during the
implementation phase by teams of OSS contributors?:
For those projects that claimed to have design models, we

60.31%
250 B #resp = 405

#proj =388

#projects

21.91%
17.78%

) . .

UML models areUML modelsare No opinion

considered not considered

(b) Are NUCs aware of the exis- Figure 7. Are the UML model(s) considered in the commu-

nication between contributors? (per project)
W UML as basis for architecture decisions
58.76% 58.25%
32.73% 31.96%
851% 9.79%

2
3 200
=
150
100
50
I .

I used UMLmodels that I've seen other contributors | have not witnessed this
way used UML models for that use of UML models

W UML as a basic for mentoring

#resp = 405
#proj =388

jects
~
&
g

Figure 8: Is UML a basis for architectural decisions or
mentoring activities? (per project)

asked the question “Was the UML model adopted during
the implementation phase?”. Fig. 9 summarizes the answers
of the 231 respondents from 225 projects. In most cases
UML models were adopted partly or completely during the
implementation phase (about 92%).

32.44% 35:56% #resp = 231

80

70 24.44% #proj =225
60

50

40

30 7.56%

20

S [

The design was
completely
adopted

projects
=
1S

The design was The design was The design was
adopted with partially followed not considered at
minor changes all

Figure 9: Was the UML model adopted during the imple-
mentation phase? (by project)

If the answers were that UML models were at least
partially adopted, we asked further questions to find out
who and how many contributors implemented the modeled
designs. Fig. 10 and Fig. 11 summarise the responses per
project (based on 214 individual responses for 208 projects).

Creators of UML models are greatly involved in imple-
menting the modeled designs (in 88.5% of the projects).
Experienced contributors helped in 35.5% of the cases and
novice contributors helped in around 13% of the cases.

In the majority of the projects (around 66%) more that
one person participated in the implementation of previously
modeled designs. However, only 7% of the projects reported
to have more than 5 contributors involved in such joint
implementation efforts.

The creators of the architectures/models IS 8 46 %
Experienced contributors of the project | 35.58%
Novice contributors of the project [l 13.46%

9
#resp = 214 Other [l 2.88%

#proj =208 0 50 100 150 200
projects

Figure 10: Who implemented the UML models? (by project)

11 - 20 persons
1% > 20 persons
1%

#resp =214
#proj = 208

6 - 10 persons
5%

3 - 5persons

34%

Figure 11: Number of contributors who implemented UML
models in a project

Results for SQ,3: Designs introduced with UML are in
most cases adopted during the implementation phase (fully
or with slight changes). Most often these designs are
implemented by groups of 2-5 developers.

D. What is the impact/benefit of UML?

1) Can UML models support new contributors?:

We used two perspectives to approach the question whether
UML models support new contributors.

First, we ask founders if they think that UML models
help new contributors to join their projects. We received
190 responses from 84 F-1UCs, 79 F-NUCs and 27 F-UCs.
For those who agreed, we further asked with what tasks
models help. Fig. 12 shows the responses in detail. 124 out
of 190 respondents (65.26%) agreed that UML models can
help new contributors when joining projects. They expected
models to assist new contributors in comprehending the
system (90%), during implementation phases (65%), and
when communicating with other contributors (56.5%).

Second, we asked each contributor what software artifacts
he/she used when they got started with the project. 485 con-
tributors answered this question. Despite the fact that most
of respondents were familiar with architectural documents
(as shown in Section V-A), source code still remains their
first choice to start working with an OSS project (81%) - see
Fig. 13. Remarkably, UML and software models in general
were reported to be starting points for 55% and 43.5% of the
respondents, respectively. This is more than the proportion
of contributors who started using wikis, issues, manuals, and
auto-generated code documentation. This conforms with the
answers given by the founders about new contributors.

Results for SQs 1: The results suggest that UML is helpful
for new contributors to get up to speed.

140 65.26% #resp=190

N =190 120 90.32%

100

80

40

20

0
S

0 l &

Yes No

#resp=124
56.45% 64.52% N=190

=
&

No opinion & 4\\& &
TS «

firespondents
@
3

18.42% 1632%

firespondents

2o
N B O ® O R
S 5 3838 38 o

(a) Do UML models help new

contributors? (b) For what tasks do models help?

Figure 12: Responses for the questions whether UML models
help new contributors to join a project.
Software artifacts to get started working with OSS projects

Code 81.44%

UML (Unified Modeling Language) ssss——— 55 269%

Software Models in general ——— 4351%
Wiki — 31.75%
Auto-generated code documentations —|E—— 1 30.93%
Issues |E— 30.31%
Manuals — 30.1%

#resp = 485 White papers mmm 11.13%

N=458 0 100 200 300 400 500
#respondents

Figure 13: Software artifacts used by respondents to start
working in their OSS project (multiple choices were al-
lowed).

2) What are the impacts of using UML in OSS projects?:

Because of their overview about the projects, we asked
founders for their impression about the impacts of introducing
UML into their project. Fig. 14a and Fig. 14b summarize
the 190 answers for the two questions. A majority of
respondents (65.79%) reported positive impacts, while only
a few founders (<2%) encountered negative impacts. Only,
34% of the founders saw changes in the way the contributors
worked after UML was introduced.

To find out more about the changes, we asked those who
observed changes to describe the way the working routine
had changed. We received 31 responses to the open ended
question. Comments positive to UML can be summarized in
following groups: i) Hiding complexity/improved overview
(mentioned 18 times); ii) Improved communication/ reduced
ambiguity (6 times); iii) Prevention of sub-standard imple-
mentations (5 times); iv) Improved scoping and partitioning
of work (3 times); v) Improved/easier to implement designs
(9 times); vi) Improved quality assurance (1 time); vii)
Reduced architecture degradation (1 time).

We also received two answers describing negative changes,
complaining about more work and the need for developers
to learn UML notation.

Results for SQs 5 One third of respondents reported changes
of the working routine due to UML, mainly in the planning
phase, the development process and in communication. Most
of the reported changes can be considered positive.

80 39.47% #resp = 190

140 65.79% #resp =190 N=190

70 33.68%

120 N=190 60
100 s 26.84%

80 32.63% 0

60 30

40 20

20 1.58% 10

0

0 —
Yes, the way No,thereisno No opinion
of working change

changed

Positive
impact

No specific
impact

Negative
impact

(a) Overall impact (b) Impacts on working routine

Figure 14: Impacts of introducing UML in OSS projects

3) Can UML models help to attract new contributors?:
We ask founders if they think that UML models help to attract
new contributors to their projects. 190 founders answered
this question. Fig. 15 shows the responses in detail. Only a
few of the respondents (21.58%) believe that UML models
can attract new contributors, while most of them think UML
is not an attractive factor (47.37%).

We asked those who think UML models attract new
contributors for reasons behind their thoughts. We received
only 25 answers, including following arguments: a) UML
models make the project and its goals easier to understand
(mentioned 13 times), b) the potential of UML to help new
contributors (by code comprehension) (7 times), ¢) visual
documentation is considered attractive (3 times), and d) UML
can support communication between old and new members
(2 times).

It is worth mentioning that two of the projects have been
based on executable UML diagrams (xtUML), therefore the
diagrams were considered a magnet to contributors.

Two of the respondents who answered previously that
UML is an attracting factor, mentioned additional factors,
i.e., the personality, the quality of the model, and complexity
of the project, e.g., “I feel that it depends on two things:
how perceptive the contributors are, and how elegantly and
interesting the models [were] structured”.

100 47.37% #resp =190
N =190

31.05%
21.58%

40
0
Yes

Figure 15: Do UML models attract new contributors to the
project?

Results for SQ33: Few founders think UML models attract
new contributors to their projects.

respondents

No No opinion

VI. DISCUSSIONS

In the following we discuss our insights in context of
related works and implications of our results. Furthermore,
we present the threats to validity.

A. Comparison to Insights to Related Works

In this section, our observations are compared with findings
from related works.

Communication: The finding that UML is used for commu-
nication purposes within OSS fits with observations that were
already made about the use of documentation by Kazman
et al. [23] and sketches Chung et al. [24]. Furthermore, the
results fit with the insights of Gorschek et al. [15], who also
observed a use for communication within industrial and OSS
programmers.

New contributors: The observation that new contributors
seem to benefit from the use of UML confirms the first
anecdotal evidence that Chung et al. collected [24]. Gorschek
et al. found similar tendencies in their survey, where the use
of models was found to be higher for novices [15].

Design and documentation: We could uncover a main
similarity in the use of UML in OSS and industry, as
we observed that UML is mainly used for design and
documentation, and less for code generation within OSS.
Similar observations had been made for industrial usage by
Torchiano et al. [14] and Forward et al. [16].

Role splits: However, we also found a hint of a contrast in
the use of UML. While we observed that the architectures de-
fined within UML models are often implemented by multiple
developers, as it happens within industry, we also observed
that in most cases all these contributors had participated
in the model creation. This seems to be in contrast to the
practice in many industrial cases, where those who create
the models are not necessarily the ones who create the code,
as, e.g., observed by Kuhn et al. [13].

Finally, we made two observations that should be further
studied, also in industry. Passive benefits: Many participants
who do not create UML models consider its existence in
the project beneficial. Partial adoption: Many models are
only partially adopted during implementation. It would be
interesting to see whether this conforms or is in contrast to
industrial practice.

B. Implications

1) OSS practitioners: Use UML to coordinate team work!
We know that UML is used in industry within teams - com-
municating and coordinating their work [33]. The insights
from this paper indicate that this practice might actually also
work to coordinate joint efforts within OSS teams with often
remotely located developers.

2) OSS seniors: Provide UML to support your junior
peers! In most investigated aspects the answers given by
NUCs showed a slight tendency to be more positive about
UML than the answers of UML contributors. Thus, it seems
that models have an impact on teams that affects not just the
model creators positively. We hope that OSS contributors
feel motivated by these results to contributing more models.
Furthermore, it seems that the usage of UML helps new

contributors to get productive. This might be seen as an
incentive for the introduction of UML.

3) Industrial companies: Adopt team-modeling! The ob-
served contrast that most people implementing a model also
participated in its creation, might be an interesting option
for industrial practice, too. Especially, when agile practices
are applied, models can be taken into the loop, e.g., as part
of planing during Scrum meetings.

4) University teachers: Promote consumption as first
experience when learning UML! Again, the mentioned slight
tendency of NUCs to be more positive about UML is worth
noting. It seems that the benefits of UML are more positive
for consumers than for creators. This is to be confirmed
in future studies. It can have today an impact on the way
we teach modeling. Students still tend to learn modeling by
creating models. Our results imply that it might be a good
idea to let them consume models first.

C. Threats to Validity

In the following, we discuss internal and external threats
to validity of our study as introduced by Marczyk et al. [32].
Internal validity: Some threats that are generic to
research that use GitHub data, as discussed by Kalliamvakou
et al. [29], concern our study, too: First, a large amount
of GitHub projects are not software development projects
or have very few commits, only. Furthermore most GitHub
projects are inactive (Kalliamvakou et al. guess that the
amount of active projects is around 22%). To mitigate the
impact of these threats on our study, we filtered the projects
based on the number of commits and size. Since such
filters are always just heuristics, it is probable that some
of the remaining projects still are toy or educational projects.
However, we consider the remaining threat acceptable, since
we can assume that the vast majority of the here studied
projects are real software development projects.

We focus on projects that do use UML only, to ensure
that questioned developers have the experience of working
in a project with UML. To ensure nonetheless that persons
that prefer to not use UML are not underrepresented, we sent
the questionnaire not just to persons who manipulated UML,
but also to contributors who did not change or introduce
UML files (NUCs). Therefore, we believe that our results
still provide valuable insights.

External validity: Our study focuses on OSS projects
in GitHub. While we do not expect a direct generalization
of our results to closed source projects, we expect them
to be mostly generalizable to OSS projects. 16.29% of the
survey respondents had a PhD degree. This rate is higher
than industry average. We expect them to be more positive
about UML, making them more likely to have answered our
questionnaire. Thus, there might be a selection bias towards
projects that have PhDs as contributors. We do not know
whether these projects are different in nature concerning
our results. However, since this concerns only 16.29% of

our data points, we believe that our results are nonetheless
representative.

We did not limit the domain. However, there might be a
bias towards the domain that comes with the use of UML.
Since we study the impact of UML, when it is used, we
consider our results valuable despite the possible bias in
study domains. We only have a look at UML models that
are stored as specific file formats. Although, it would be
better to have a look at all possible representations of UML
models that exist, the selected set of formats comprehends
the standard ones (.uml and .xmi) and image files, being
already broad and allows a first valuable insight. Finally,
in this study, we do not distinguish between UML diagram
types. We therefore do not conclude for single UML types
but for UML in general.

VII. CONCLUSION AND FUTURE WORK

In this paper we study the use of UML in open source, in
order to identify commonalities and differences to the use
of UML in industry. Therefore, we performed a survey with
contributors from 458 GitHub projects that include UML
files. Our study delivers some first insights that might help
companies to decide whether to promote UML usage in
open source projects. In favor of UML are the observations
that UML actually helps new contributors and is generally
perceived as supportive. However, UML does not seem to
have the potential to attract new contributors. Further, we
found that the use of UML in open source projects is partially
similar to industrial use. However, there are also differences
that should be considered when joining industrial projects
with open source efforts. For example, the fact that there
seems to be barely a split of roles between model creator and
person implementing the modeled system. Furthermore, we
found that many modeled designs are only partially followed
during implementation.

Future works: We only use a part of survey responses
in this study (ignoring responses of short-time projects). In
the future, we plan to compare whether the results for these
projects are different from the ones we found. Furthermore,
we plan to use meta data to investigate whether different
aspects such as size, active time, and number of contributors
of a project affect the use of models and the perception
of developers within the projects. Nonetheless, our findings
from this study are drawn for UML in general. We would
love to enrich our dataset by classifying UML diagrams by
diagram type. This will enable to see whether diagram types
affect the use of UML, and what UML diagrams are in widest
use.

ACKNOWLEDGMENT

We are very grateful to all participants of the study for
taking the time and sharing their experience. G. Robles
acknowledges the eMadrid (S2013/ICE-2715) and NUBO-
MEDIA (FP7-ICT-2013-1.6, GA-610576) projects.

[1

—

[2

—

[3

—

[4

—_

[5

—

[6

—_

(71

[8

—

[9

—

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(171

REFERENCES

Cristina Gacek and Budi Arief. The many meanings of open
source. IEEE software, 21(1):34-40, 2004.

Kevin Carillo and Chitu Okoli. The open source movement:
a revolution in software development. Journal of Computer
Information Systems, 49(2):1-9, 2008.

Brian Fitzgerald. The transformation of open source software.
Mis Quarterly, pages 587-598, 2006.

Daniel M German. The gnome project: a case study of
open source, global software development. Software Process:
Improvement and Practice, 8(4):201-215, 2003.

Dirk Riehle. The economic case for open source foundations.
Computer, 43(1):0086-90, 2010.

@yvind Hauge, Claudia Ayala, and Reidar Conradi. Adoption
of open source software in software-intensive organizations—
a systematic literature review. Information and Software
Technology, 52(11):1133-1154, 2010.

Kevin Crowston, Kangning Wei, James Howison, and Andrea
Wiggins. Free/libre open-source software development: What
we know and what we do not know. ACM Computing Surveys,
44(2):7, 2012.

Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and
Brian Fitzgerald. A comparative study of challenges in
integrating open source software and inner source software. In-
formation and Software Technology, 53(12):1319-1336, 2011.
Diomidis Spinellis and Clemens Szyperski. How is open
source affecting software development? I[EEE Software,
21(1):28, 2004.

Claudia Hauff and Georgios Gousios. Matching GitHub
developer profiles to job advertisements. In Proceedings of the
12th Working Conference on Mining Software Repositories,
pages 362-366. IEEE Press, 2015.

Regina Hebig, Truong Ho-Quang, Gregorio Robles,
Michel R.V. Chaudron, and Miguel Angel Fernandez. The
quest for open source projects that use UML: Mining GitHub.
International Conference on Model Driven Engineering
Languages and Systems (MoDELS), 2016.

Gregorio Robles, Jesus M Gonzalez-Barahona, and Juan Julian
Merelo. Beyond source code: the importance of other artifacts
in software development (a case study). Journal of Systems
and Software, 79(9):1233-1248, 2006.

Adrian Kuhn, Gail C Murphy, and C Albert Thompson. An
exploratory study of forces and frictions affecting large-scale
model-driven development. In International Conference on
Model Driven Engineering Languages and Systems, pages
352-367. Springer, 2012.

Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessan-
dro Tiso, and Gianna Reggio. Relevance, benefits, and
problems of software modelling and model driven techniques
- A survey in the Italian industry. Journal of Systems and
Software, 86(8):2110-2126, 2013.

Tony Gorschek, Ewan Tempero, and Lefteris Angelis. On
the use of software design models in software development
practice: An empirical investigation. Journal of Systems and
Software, 95:176-193, 2014.

Andrew Forward, Omar Badreddin, and Timothy C Lethbridge.
Perceptions of software modeling: a survey of software
practitioners. In 5th workshop from code centric to model
centric: evaluating the effectiveness of MDD, 2010.

Paul Baker, Shiou Loh, and Frank Weil. @ Model-driven
engineering in a large industrial contextmotorola case study.
In International Conference on Model Driven Engineering
Languages and Systems, pages 476-491. Springer, 2005.

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

(33]

Ariadi Nugroho and Michel RV Chaudron. Evaluating the
impact of UML modeling on software quality: An industrial
case study. In International Conference on Model Driven
Engineering Languages and Systems, pages 181-195. 2009.
Omar Badreddin, Timothy C. Lethbridge, and Maged Elassar.
Modeling Practices in Open Source Software, pages 127-139.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

Wei Ding, Peng Liang, Anthony Tang, Hans Van Vliet, and
Mojtaba Shahin. How do open source communities document
software architecture: An exploratory survey. In Engineering
of Complex Computer Systems (ICECCS), 2014 19th Interna-
tional Conference on, pages 136-145. IEEE, 2014.

Koji Yatani, Eunyoung Chung, Carlos Jensen, and Khai N
Truong. Understanding how and why open source contributors
use diagrams in the development of Ubuntu. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, pages 995-1004. ACM, 2009.

Mohd Hafeez Osman and Michel R. V. Chaudron. UML
usage in open source software development : A field study. In
Proceedings of the 3rd International Workshop on Experiences
and Empirical Studies in Software Modeling co-located with
16th International Conference on Model Driven Engineering
Languages and Systems (MoDELS), pages 23-32, 2013.

R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and
G. Valetto. Evaluating the effects of architectural documenta-
tion: A case study of a large scale open source project. /[EEE
Transactions on Software Engineering, 42(3):220-260, 2016.
Eunyoung Chung, Carlos Jensen, Koji Yatani, Victor Kuechler,
and Khai N Truong. Sketching and drawing in the design
of open source software. In [EEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 195—
202. IEEE, 2010.

Philip Langer, Tanja Mayerhofer, Manuel Wimmer, and Gerti
Kappel. On the usage of UML: Initial results of analyzing
open UML models. In Modellierung, 19, page 21, 2014.
Georgios Gousios and Diomidis Spinellis. =~ GHTorrent:
GitHub’s data from a firehose. In 9th IEEE working con-
ference on Mining Software Repositories, pages 12-21. 2012.
Hudson Borges, André C. Hora, and Marco Tulio Valente.
Understanding the factors that impact the popularity of GitHub
repositories. CoRR, abs/1606.04984, 2016.

Gregorio Robles, Jesis M Gonzilez-Barahona, Daniel
Izquierdo-Cortazar, and Israel Herraiz. Tools for the study
of the usual data sources found in libre software projects.
International Journal of Open Source Software and Processes
(1JOSSP), 1(1):24-45, 2009.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif
Singer, Daniel M. German, and Daniela Damian. The promises
and perils of mining GitHub. In Proc of the 11th Working
Conference on Mining Software Repositories, pages 92-101,
New York, NY, USA, 2014. ACM.

Igor Scaliante Wiese, Igor Steinmacher, Christoph Treude,
Jose Teodoro Da Silva, and Marco Gerosa. Who is who
in the mailing list? Comparing six disambiguation heuristics
to identify multiple addresses of a participant. In Proc of the
32nd Intl Conf on Software Maintenance and Evolution, 2016.
Carolyn B. Seaman. Qualitative methods in empirical studies
of software engineering. [EEE Transactions on software
engineering, 25(4):557-572, 1999.

Marczyk G, DeMatteo D, Festinger D. Essentials of research
design and methodology. John Wiley & Sons Inc., 2005.

C. F. J. Lange, M. R. V. Chaudron and J. Muskens. In practice:
UML software architecture and design description, in IEEE
Software, vol. 23, no. 2, pp. 40-46, March-April 2006.

